WESTERN AUSTRALIA.
[Published by Authority.]
No. 20.]
PERTH: TUESDAV, APRII 2%
[1880.

No. 613.-C.s.O.
Colonial Secretary's Office, Perth, $26 t h$ April, 1880.

TPENDERS (endorsed "Tender for Conveyance of Mails,") will be received at this Office until noon of Thursday, the 13th May, from persons willing to convey the Mails between York, Northam, and Newcastle, weekly, during the current year, in a fourwheeled conveyance capable of carrying two passengers, and in the following manner, subject to alteration:-

Tuesday-Leave York for Northam on arrival of Mail Coach from Perth.
Tuesday-Arrive at Northam in $2 \frac{1}{2}$ hours.
Wednesday-Leave Northam for Newcastle at $7 \mathrm{a} . \mathrm{m}$.
Wednesday-Arrive at Newcastle in $2 \frac{1}{2}$ hours.
Friday-Leave Newcastle for Northam on amival of Mail Coach from Perth.
Friday-Arrive at Northam in $2 \frac{1}{2}$ hours.
Saturday Leave Northam for York at 7 a.m.
Saturday-Arrive at York in $2 \frac{1}{2}$ hours.
Tenders to state date on which conveyance of Mails can be commenced.

The arrival and departure of the Mails will be subject to instructions from the Postmaster General, and liable to alterations at any time during the year.

Two approved sureties will be required to join the Contractor in a guarantee for the due fulfilment of the duties contracted to be performed.

Special Forms of Tender, with conditions attached, may be had on application to the various Resident Magistrates, and at the General Post Office, Perth; and no Tender will be entertained unless rendered on the prescribed form.

The Government will reserve to themselves the right to terminate the Contract at any time by giving three months' notice.

A free passage must be provided for an Officer of the Post Office or Telegraph Department, when required by the Postmaster General.

The Government do not bind themselves to accept the lowest or any Tender.

Further information may be had on application to the Postmaster General.

By His Excellency's Command,
ROGER TUCKED. GOLDSWORTHY,
Colonial Secretary.

No. 609.-C.S.O.
Colonial Secretary's Office, Perth, $19 t h$ April, 1880.
IN accordance with the provisions of "The Public Officers Act, 1879," it is hereby notified that His Excellency the Governor has, by writing under his hand and seal bearing date the 166 h instant, appointed Mr. Aufred Weils to exercise and discharge, during the absence through illness of Mr. Frederick Wheeler, Bailifíh of the Local Court of Perth, all the powers and duties of the office of Bailiff of the said Court, with the title of Acting Bailiff.

By His Excellency's Command,
ROGER TUCKFD. GOLDSWORTHY,
Colonial Secretary.

The Electoral District of Swan.

IROWLEY CROZIER LOFXIE, the Returning Officer for the said District, hereby give Notice that on the 23 rd day of April instant, I receired from the Governor of the Colony a Writ for the election of a Member to serve in the Legislative Council for the above District; and such Election will be held at the Police Court House, in Guildford, as the Central Polling Place, and at the Police Station in Gingin as the District Polling Place, for and within the said District, at the hour of ten in the forenoon on Satur. day, the 22 nd day of May next.

Dated the 24th day of April, 1880.
ROWLEY C. MOFTIE,
Returning Officer for the Electoral
District of Swan.
Western Austratia.

Comptroller's Office,
Fremantle, 24th April, 1880.
YERITFICATES of Freedom have been Issued to the undermentioned convicts, whose sentences have expired:-

Reg. No. 9003 John Smith
9712 Henry Dickerson
HIS Excellency the Governor has been pleased to revoke the Tickets-of-Leave of the undermentioned convicts:-

Reg. No. 9751 John Gray
" 10152 John Shirkey
JOHN F. STONE,
Comptroller.

$\mathbb{B}^{\text { }}$Y. Virtue of Her Majesty's Writ under the hand of the Governor and the Public Seal to me directed, dated the seventeenth April, 1880, I do hereby give public notice that an election of five members of a District Board of Education for the District of Williams River, will be held in the Court House, at Williams, at 12 o'clock noon of the 18 th day of May next ensuing, pursuant to the Act of the Legislative Council intituled "An Act to provide for Public Elementary Education, and to encourage voluntary efforts in support of Schools," at which day and place all persons entitled to vote at the said election are requested to give their attendance.
Dated the 21st day of April, 1880.
JOHN C. ROSSELLOTY,
Resident Magistrate,
And Returning Officer for the Educational District of Williams River.

NOTICR.

ANY person who shall desire to have his name inserted in the Electoral List for the District of Wellington, must apply personally or otherwise to the Clerlz of the Magistrates, on or before April 10th.

The Electoral List will be kept fixed at the Court House, and may be perused by any person without payment of fee during the week ending April 24th.

Objections to names on Electoral List must be sent to the Magistrates' Clerk, and notice thereof given by the objector to the person objected to, on or before April 24th.
List of persons objected to will be kept fixed at the Court House for eight days preceding May 4th.

A Court of Petty Sessions for revision of the Electoral List of the District of Wellington will be holden in the Court House, Bunbury, on Wednesday, May 12th, at eleven o'clock in the forenoon.
W. PEARCE CLIFTON, R.M.

Resident's Office, Bunbury, $\}$
25th March, 1880.

No. 612.-C.S.O.
Colonial Secretary's Office, Perth, 24th April, 1880.

HIS Excellency the Governor directs the publication of the following Notices to Mariners, for general information.

By His Excellency's Command, ROGER TUCKFD. GOLDSWORTHY, Colonial Secretary.

Notice T0 MARINERS.

[No. 195.]
AUSTRALIA.
BASS STRAIT-KING ISLAND.
flashing light at currie marbour.
With reference to Notice to Miariners, No. 163 , of 164 lh October, 1879, on the intended exhibition, on 1st March, 1880, of a light from a lighthouse erected on the south side of Currie arbour, west coast of King lsland:--
The following further particulars have been received from the Government of Tasmania, the light will be exhibited on 1st March, 1880 :-
The light will be a flashing light, showing fivo flashes and eclipses alternately in a minute, elevated 150 feet above the sea,
and should be visible in clear weather from a distance of 17 miles. The light will illuminate an are of 180°-from New Year ishands on the north, to Cataraque point on the south.
The lighthouse, 70 feet high, constructed of iron, with central tube for stairense, and supported on 6 iron columns, is sitanted on an eminence about 80 feet high.

Position as given, lat. $39^{\circ} 56^{\prime} 45^{\prime \prime}$ S., long. $143^{\circ} 51^{\prime}$ E.
Caution.-Mariners approaching King Island are specially warned to note the distinctive features between Currie harbour flashing light and cape Otway revolving light, on the coast of
Victoria, viz:-

Currie harbour light shows give flashes every minute.
Cape Otway light attains its greatest brilliancy once every
minute.
By Command of their Lordships,
FREDK. J. EVANS,
Hydropraphic Ojhce, Admiralty, London,
17th Deeember, 1879.
This Notice affects the following Admiralty Oharts:--south Pacific,
This Notice afiects the following Admiralty Charts :-South Pacife,
No. 788 , Austrahia, genem, No.
Bass strait, west

N0TICE T0 MARINERS.

[No. 202.]
NEW ZEATAND.
MIDDLE ISLAND--SOUTH-EAST COAST. otago harbour.
The following information relating to the bar and entrance of Otago harbour has been received from the New Zealand Gov-ernment:-
According to a surrey made by order of the Otago Harbour Board, in March 1879, the least water on the bax of that harbour with the leading lights in line bearing S.S.W., was 15 feet at low water ondinary spring tides.
The green light open north of the white light, and bearing S. by W. $\frac{3}{2}$ W., leads across the bar in 16 feet.

The least water found in the north channel was 19 to 20 feet.
Norm.-Within the bar the chamel (on entering) is marked by red buoys and beacons on the starboaxd hand, and black moored S W by S . cables from the irst red bencon. vessel is moored S. M. by S. 2 eables from the first red bencon.
According to the survey above referred to, the lighthouse on Tairoa head is situated N. 7° B. 190 yards from the position
heretofore assigned to the signal stafi.
Cautron.-It should be observed that the depths on the bar of Otago harbour are subject to change.--For some years theve was reported to be not less than 18 feet at low water, but the great tidal wave of August 1868, suddenly reduced the depths to 12 feet. After that date the bar slowly resumed its original feet in the channel across it and aceording to informotion published by the local outhorities the some depth was main pubusued by the local anthonties, the same depta was main-
The depths in the north channel are also reported subject to change.
(The bearings ane Iagnetic. Variation 17° Eastenly in 1879.) By Command of their Lordships,

FREDIS. J. EVANS,
Hydrographic Offce, Admiralty, London,
23 rd December, 1879.
This Notice affects the following Admiralty Charts:-Ninety miles beach to Otago, No. W3g; Otago to Mataura river, No 2533; Otayo har-

igits in South Africa, Austwhila, \&e., 1879, No. 321.

NOTICE TO MARINERS.
 [No. 12.]

AUSTRALTA-SOUTH COAST.
ST. VINCENT GULF-MACDONNEL SOUND.
(1) FIXED IIGHT ON EDITHBURG JETTY.

The Government of South Australia has given Notice, that on 4th October, 1879 , a light wonld be exhibited from the outer extremity of Edithburg jetty (De Mole point), Macdonnel
sound:-sownd:-
The light is a ficed white light, and shonld be visible in clear weather from a distance of about 5 miles.
Position approximate, 1 at. $35^{\circ} 5^{\prime}$ S., long. $137^{\circ} 44^{2} z^{\prime}$ F.

NEW ZEALAND-MIDDLE ISLAND.

FOVEAUX STRATT.

(2) LIGET-VESSEL AND JETTY LIGHT IN BLUFF HARBOUR.
The Government of New Zealand has given Notice, that a light is now exhibited from a small vessel placed on the
western side of the narrowest part of the entrance to Bluff (Amarua) harbour:-
The light is a fixed white light.
The light-vessel, moored with four anchors (quarterly), swings in her own length, and lies with the following bearings and distances, viz.:-
Triangle rocks (sumken) ... S.S.I., distant ${ }^{\text {th }}$ ths of a cable.
Brial point S. by E. B. .". 2 cables.
Position approximate, lat. $46^{\circ} 36^{\prime} 15^{\prime \prime}$ S., long. $168^{\circ} 22^{\prime} 20^{\prime \prime}$ B.
Jetry Ligut. - A red light is exhibited from the end of a jetty situated West 3 cables from the light-vessel.
Note.-Care should be taken by vessels dropping past the ight-vessel, not to hook the moorings which extend 0 tathom at low water spring tides-Vessels drawing over 12 feet, should not at low water, come southward of the line joining the lightvessel and the northern face of the jetty.
(The bearings are Magnetic. Variation $16{ }^{10}$ Dasterly in 1880.)
By Command of their Lordships, FREDr. J. EVANS,
Hydrographic Office, Admiralty, London,
1 1uth January, 1880 .
This Notice affects the following Adminalty Charts:(1) Australla, general, No. 27opb; St, Vincent and Spencer Gulfs, No.
 South Africa, Aus
vol. $1 ., 1876$, page 167
(2) New Zealand islands. No. 1212; Foveaux strait and Stewart island, Lightis in South Africa, New Zealand, \&c., 18s0, page us; And New Zealand Pilot, 1875, page 240.

NOTICE TO MARINERS.

[No. 14.]
 AUSTRALIA-EAST COAST.
 CUMBERLAND ISLANDS-WHITSUNDAY PASSAGE.

(1) REVOLVING LIGET ON DENT ISLAND

The Government of Queensland has given Notice, that on 13th October, 1879 , a light would be exhibited from a lighthouse recently erected on the western side of Dent island, Whitsunday passage:-
The light is a revolving white light, attaining its greatest brilliancy evory tivity sconds, elevated 120 feet above high water, and should be seen in clear weather from a distance of 16 miles; in to the northward by Cid island.
The illuminating apparatus is dioptric, or by lenses of the fourth order.
The lighthouse, 33 feet high, circular in shape and painted white, is situated about threencuartexs of a mile from the southern extremity of Dent island.
Position, lat. $20^{\circ} 22^{\prime} 20^{\prime \prime}$ S., long. $148^{\circ} 58^{\prime} 20^{\prime \prime} \mathrm{E}$.

NORTH-EAST COAST.

TORRES STRATT-PRINCE OT WALES CHANNEL.

(2) BUOY ON SUNK REET (d).

Also, that a can buoy, painted black, is moored off the southern extremity of Sunk reef (d), in 4 fathoms at low water.

By Command of their Lordships,
FREDE. J. EVANS,
Hydrographic Ofice, Admivalty, London,
tãth January, 1880.
This Notice affects the following Admiralty Charts :-
(1) Austrulia, general, No. 27a0g; Coral sen, Great Barrier reef, No. Listiof Lights in South Africa, Australiz, 奴, 8880 , page 4 ; and Austratia Directory, vol. 11 ., 1579 , pages 189 and 109 .
(2) Cape Grenville to Booby island, No. 2553; Towes strait, western channels, No. 237, Nomanby sound and prince of

Hydrographic Notice.
[No. 28.]
PACIFIC OCEAN.
Notice No. 49. SOUTH-WESTERN PART. FIJI ISLANDS.

The following information relating to the Lau or Eastern group of the Fiji islands has been received.
from Lieutenant W. U. Moore, commanding H.M. Surveying Schooner Alacrity, 1878-9.
All Bearings are Magnetic. Variation 10° Easterly in 1879.

LAU OR EASTERN GROUP.:

SUVA TO LOMATOMA.-Sailing vessels bound from Suva to Lomaloma should endeavour to weather the island of Ngau by daylight, and then steer to pass to leeward of Thithia.

In approaching the Tongan pass, which leads into the Vanua Mbalavu lagoon, it is better to keep well towards Vekai, as a westerly current is often experienced off the horn of the barrier reef, south of Munia.

LEVUKA TO LOMALOMA.-In sailing from Levuka to Lomaloma it is customary to pass half way between the Horse-shoe reef and the north point of the Nairai barrier, using a bearing of Mbatiki to clear the latter.

THE "EXPLORTNG IST.ES" was the name given by the U.S. Exploring Expedition, 1840, to a group of islands enclosed within a barrier reef, of triangular shape, 77 miles in extent, with many passages leading into it. \dagger

This group, the most important in Lau, will first be described.

VANUA MBAI,AVU is an irregular shaped island 14 miles long, and from a half to $2 \frac{1}{2}$ miles broad, with several peaks on its backbone ridge, the highest of which, Koro Mbasanga, in the centre of the island, is 930 feet high. The direction of the island is N.N.E. and N.W., a sharp bend occurring in the centre and broadest part under Koro Mbasanga. The southern half of Vanua Mbalava is chiefly volcanic, and the soil very fertile, but the north-western part is formed of coral upheavals covered with impenetrable bush.

The population in 1878 consisted of 23 whites, 24 half-castes, 60 Tongans, and 1,100 Fijians. The Roko Tui of Lau, Henry Maafu, the once powerful Tongan Chief, who, for many years, contended with Thakombau for the chief authority in Fiji, lives in this island, and has supreme control over the coloured inhabitants, an English magistrate being resident also, to carry out the processes of the law in Lav. There is also an English missionary, a Collector of Taxes who is Postmoster and Health Officer, and two or three European merchonts.

Iomaloma is the chief town of Vanua Mbalava and the principal depot for produce in Lau. It is sitnated near the south end of the island, on the eastern coast, and behind the small island of Yanuyanu, which is wooded, and 260 feet high. Lomaloma is chiefly composed of native houses, but there are a few European stores and residences, a courthouse, and a spacious native church.

Lomaloma harbour.-Between Yanuyanu and the town of Lomaloma there is a small well-protected harbour, where good anchorage can be obtained in a vessel of large size in 7 fathoms, sand and mud. Vessels of over 200 tons have to warp out, as there is a long spit of coral grit running out west of Yanuyanu, which narrows the space for tacking. The beach is well adapted for hauling-up vessels of 6 feet draught and under.

Fresh water can be obtained in casks from a stream one mile north of the anchorage, but as it runs through taro beds it is not recommended for drinking purposes.

Supplies of yams, eggs, turkeys, fowls, milk, and bread can occasionaily be obtained from the European residents.

Health regulations.-Lomaloma is one of the four ports of entry of the colony of Fiji. The following regulations are extracted from Ordinance No. XII., 1877, regarding quarantine :-

No vessel coming from beyond the colony shall communicate with any island or place within the colony until she shall have received pratique at a port of entry; and every such vessel on approaching a port of entry with a view of communicating shall hoist a yellow flag by day or a green light at night at the mast or foremast head, and such yellow flag by day or green light at night shall be kept hoisted until such vessel shall be admitted to pratique.
It shall be unlawful for any vessel that has not been admitted to pratique to approach within one hundred yards of any other vessel in harbour, or to transmit any article therefrom; or for any person, except a health officer or pilot and their respective boats'
crews, to approach within one hundred yards of a vessel before such vessel shall have been admitted to pratique.

The form of inquiry to be filled up by master or surgeon, known as Schedule B on the Ordinance, is similar to that used in other ports.
Yanu Yanu (the island) was the quarantine station in 1878, but will probably not long remain so, as it is immediately to windward of the town.

NUNIA is a voloanic island, $2 \frac{1}{4}$ miles long, in a N.N.E. and S.S.W. direction, by three-quarters of a mile broad. One ridge runs through the centre of the island, the highest point of which is 950 feet high. The island is owned by an American, who employs foreign labour. Vegetables and water in small quantities can be obtained.

Landing is not easy on account of the shore fringe of coral, which dries at half tide and connects the south coast of the island with the barrier reef.
THIKOMBIA is a densely wooded island of coral formation, with several small peaks of about the same height, which make the island appear from seaward as if it had a serrated summit. It is 550 feet high, and has one village, called Nukulau, on the south side, containing 50 inhabitants, who occupy themselves in cultivating vegetables and manufacturing tappa.

Taxes are paid in copra. A small supply of vegetables and water can be obtained. Landing is good at the village.

SUSUI is a wooded island, lying east and west, 2_{3}^{1} miles long, and two-thirds of a mile broad. It is 430 feet high, and the coral fringe which surrounds the shore joins the barrier reef. This island is used as a grazing ground for cattle. There are about 50 inhabitants.

MA IA ATPA is a wooded island, 430 feet high, lying N.W. and S.E., and joined to Vanua Mbalava by the coral reef which dries at three-quarters ebb. It is separated at its south-east point from Susui by a narrow passage, dry at half-tide. There are about 25 inhabitants.

Boats can pass between Vanua Mbalavu and Malatta at helf-tide.
AVEA, off the north-cast coast of Vanua Mbalavu, is"a darlx, wooded, coral island, lying N.E. by N. and S.W. by S., $1 \frac{1}{2}$ miles long, and threequarters of a mile broad in the centre, and 610 feet high. It has one village on the south-west point of the island, containing 40 inhabitants, who are not well off for either food or water. The coral fringe which surrounds the island joins the barrier reef, but boats can pass the north cape at any time of tide.

Sovu islets are three uninhabited wooded rocks, lying about east and west of one another, and E.N.E., 4 miles from the north-east point of Avea. The highest and most westerly has a well-defined peak, which is 230 feet high. The smallest has a grove of fau palms.

NGILIANGIIL.AF is a precipitous coral island, close off the north-west extreme of Vanua Mbalava, 510 feet high, and densely wooded. There are no inhabitants.
Andiwathe and Yanuthaloa are small islands off the west coast of Vanua Mbalavu, 250 feet and 170 feet high respectively. The former is the property of a European, and is cultivated. In addition to those islands already mentioned, there are several smaller islets and rocks axound and near the coast of Vanua Mbalavu, for the position of which the navigator is referred to the chart.
Passages into the Vanua Mbalava lagoon. Those most frequentily used are-
(1.) The Tongan pass, on the south-east side of the barmier reef;
(2.) The American passage, on the eastern side; and
(3.) The Ngillangillah passage at the north-west corner of the lagoon, and close to the island of the same name.
The Tongan pass is that most frequently used for entering. It is situated about midway between the islands of Thikombia and Munia, is three-quarters of a mile broad, and has a coral patch 250 yards in diameter, and awash at low water in the centre. Running into the lagoon with the prevailing wind, this channel is easily navigated, provided the light is farorable.

Tides are irregular. The "flood" was observed by the Alacrity, more than once, to be setting out of the lagoon.
Directions.-A bearing of the summit of Avea N.W. $\frac{1}{2}$ N. will lead a ressel to the Tongan pass. Continue this course for 19 miles inside the lagoon until the bearing of Yanuyanu (which appears as a point of the main island standing out in relief) bears W. $\frac{1}{2}$ S., when steer for Lomaloma and enter the harbour to the north of Yanuyanu.

These directions are intended as a guide for steering on a track, the least strewn with reefs, but, from the nature of the ground, this cannot be altogether followed, and the course of the vessel must be occasionally altered to avoid coral heads.

Lomaloma harbor can be entered from either side of Yanu Yanu, but the north is generally the most convenient.
Caution.-Unless the light is favorable and the look-out vigilant, the navigation of this lagoon is hazardous. It is seldom safe to steer to the westward in it after 2 p.m.
American Passage bears Last 5 miles from the Sovu islets. It is useful for vessels bound to and from Samoa and America, and has the advantage of being easily navigated with the prevailing wind either in or out. It is three-quarters of a mile broad, and the depth in the centre is 106 fathoms. On a clear day Koro Mbasanga bearing W.S.W. will lead to the passage.
Nuku Thikombia reef lies 4 miles sonth-east of the Anerican Passage, and protects it to some extent from the south-easterly swell; the reef is $3 \frac{1}{2}$ miles long, in a N.N.E. and S.S.W. direction. On its south-western end is a sand cay 200 yards in diameter and 4 feet above high water, upon which there is a cairn of stones 8 feet above high water.
Ngillangillah Passage is useful for steam vessels bound from Levula to and from Lomaloma. There are many coral heads outside it, through which a course can be steered without difficulty, provided the light is favorable. The narrowest part of the passage is 300 yards wide. Tides run strong through it, but with regularity. The track to Lomaloma leads round the north coast of Vanu linbalava, which is fronted by numerous comal heads. Off Blackswan point the distance from the barrier reef to the shore is only 300 yards, and there is a coral patch in the centre of the channel. The shove should be kept close on board.
Besides the three passages described, there are others which are less frequented, but which are available for vessels of large size, viz., the three Sovu passages, north and north-west of the Sova islets, and the Andiwathe passage, west of Vanua Mbalava. Large sailing vessels bound from Lomaloma to Levula or Suva would find one of the Soru passages an easier means of exit from the lagoon than beating through the Tongan pass, or navigating the north side of Vanua Mbalavu with an afternoon sun. The Andiwathe passage, from its position, is of little use to any but coasting craft.
Malima islets are two small uminhabited islands, W. $\frac{1}{2}$ N., $8 \frac{1}{2}$ miles from the Ngillangillah passage. They are situated in the centre of a lagoon which is 11 $\frac{1}{2}$ to 2 miles in diameter, and protected by a barrier reef which is awash at low water, except at certain places on the north side, where boats can cross at any time of tide. The largest and most southern of the islets has a conspicuous lump on its south-west extremity, which is 130 feet high. Pumice stone was found on the south-east beach of this islet.
KANATHEA is a round island, 2 to $2 \frac{1}{2}$ miles in diameter, with some conspicuous peaks, the highest of which is 830 feet high. It is the property of two Europeans, who cultivate cotton and copra and employ foreign labor. The island is surrounded by a reef, which on the north side extends nearly a mile from the shore as a fringe, and which on the east side opens out into a barrier enclosing several miles of water, into which there is no entry at low water for even boats. The north-east end of this lagoon lies N.E. by N. 6 miles from Kanathea, leaving a passage of a little over a mile between it and the Vanua Mbalaru barrier reef.
The sea does not break on this barrier on the north-west side, and there are very moderate rollers on the south-east side in ordinary weather. Except in strong south-east winds boats can pass over a sunken place on the south-east side of the reef at half-tide by bringing the northermmost house on the
beach just open to the southward of a remarkable Thumb peals W . $\frac{1}{2} \mathrm{~N}$.

Small craft harbour.-On the north side of the island there is an indentation in the shore reef about 130 yards broad, in which small craft can anchor within a short distance of the beach.

Boenm rock.-Boëhm rock is a coral patch awash at low water, and abont 200 yards in diameter, N.N.E. $\frac{1}{3}$ E., $1_{3}^{\frac{2}{3}}$ miles from Small Crait harbour.

Danger marks.-The left extreme of Kanathea in line with the centre of Mango island S. $\frac{1}{4}$ E. leads over the Boëhm rock.

Morse reef lies $1 \frac{1}{2}$ miles to the south-east of Kanathea, and half a mile S.S.E. of the south elbow of the barrier reef. It is of very small extent, and owing to its sloping edges breaks heavily in moderate weather. A sounding of 130 fathoms was obtained between this rock and the Kanathea barrier.

MIANGO ISLAND is round, of volcanic origin and conal formation, 3 miles in diameter, and surrounded by a reef half a mile broad, except at one part of the coast on the north side, where there is merely a narrow fringe, and a ledge of sand and coral, suitable for anchorage in winds from S.W. through south to east. In this break of the reef a buoy has been moored in 14 fathoms, sand and coral, to which vessels of 200 tons may secure. Landing is good at the pier, except in strong north winds.

Caution.-The anchorage is not safe in the summer months, and sailing vessels should put to sea when the wind veers to N.E.

The island is the property of English colonists, and produces sea island cotton, said to be of excellent quality. In the year 1878,400 tons of cotton were picked.

Coffee, limes, oranges, pine-apples, kumalas, yams, and bread-fruit are grown, and copra is exported. A fine breed of Angora goats has been imported.

There are no natives on the island. Foreign labour is employed.

The highest hills in Mango overlook the south-east and west coasts, the greatest altitude being 670 feet.

Near the edge of the reef, on the south-west side, are three small islets, conspicuous when seen clear of the land.

Tide.-It is high water, full and change, at Mango pier, north side of the island (and clear from reef influences), at 6 h. 10 m ; springs rise 4 ft .8 in .; neaps range 3 ft.

Frost reef, dry at low-water spring tides, lies W. by S. $7_{2} \frac{1}{2}$ miles from Nango pier. It is circular in form, and has a diameter of nearly one mile. A rock which shows 2 feet above high water is situated near its northern edge.

Clearing marks.-Vessels bound from Mango to Levuka should keep the right extreme of Munia in line with the left extreme of Mango W. by S. $\frac{3}{4}$ S., until they have cleared Morse reef.

Katafanga is a small island, south-east of the Exploring isles, 9 cables long by 3 cables broad, lying north and south, and surxounded by a barrier reef, which on the east side reaches $2 \frac{3}{4}$ miles from the island. There are two summits to the island, both covered with palms, and of the same height, 180 feet.

The formation of Katafanga is a combination of volcanic matter and coral. It is the property of a European, who employs foreign labour, and who has cultivated cotton of a good quality and copra with success.

Supplies.-Yams, knmalas, turkeys, fowls, eggs, and good water can be obtained.

On the south-east side of the island there is a small settlement.

The passage into the lagoon is near the northeast coast. Several coral heads lie in it, but small vessels drawing 10 feet and less can navigate it with a commanding breeze. The greatest depth in the lagoon is 13 fathoms.

Malevuvu reer, N. by E. $\frac{1}{4}$ E., $4 \frac{3}{4}$ miles from the Katafanga passage, is dangerous, becunse in the track of vessels approaching from the eastward bound from Tonga to Lomaloma. It is a pear-shaped barrier reef, lying N. by W. and S. by E., $2^{\frac{2}{3}}$ miles long, $1 \frac{1}{2}$ broad, and having a depth of 13 fathoms, sand and coral, in the centre. Near the south end is a sand cay, awash at high water. Boats can enter on the west side at any time of tide.

Vekai is a coral rock, 30 feet high, covered with scrub, and situated on the inner edge of a circular reef S.W. by W. $5 \frac{1}{2}$ miles from Katafanga.

The bamier reef is 2 miles in diameter, and the lagoon has a depth of 18 fathoms in the centre. Boats can enter on the north-west side of the reef at any time of tide.

TUVUTHE, 51 miles south of Velai, is a coral island, densely wooded, with precipitous hills overlooking the const, and a depression in the centre, in which there are four or five small lakes, one of which is reported to contain salt water.

A coral barrier, 2 to 3 cables in width, encircles the island. The lagoon within has a general depth of 2 to 9 fathoms, sand and coral. A horn of the baxier, one mile south of the village, affords protection from the sea to small vessels in winds from S.E. through east to N.W. Anchorage may be obtained in from 7 to 14 fathoms close to the reef. At a distance of $1 \frac{4}{4}$ miles \mathbb{N}.W. of the village there is a boat entrance in the reef, which may be used at any time of tide.

The fish called Balolo is caught off the eastern point of the island.

Near the north-west extreme of the island there is a conspicuous peak, 800 feet high, and 50 to 100 feet higher than the other elevations on the crater-like summit. The inhabitants, seventy in number, live in a village called Tinoa, on the south-west coast. Food is scarce, but good water can be obtained 50 yards north of the village, and also on the north coast. Taxes are paic in copra.

Tavanuku-i-wai (Quinin reef), is situated 2 miles S.S.W. of the anchorage off Tavathá. It is circular in form, 7 to 9 cables in diameter, and has a shallow lagoon in the centre.

Tavanuku i vanua (Smith reef), is $3 \frac{1}{2}$ miles S. $\frac{1}{2}$ E. from the anchorage. It is 4 to 5 cables in diameter, wail-sided, and has a sand cay in the centre, which can be seen for many miles on a bright day, being 4 feet above high water. Turtle are caught here in the summer months.

Taroua is a sand islet, $2 \frac{2}{2}$ cables long by 2 cables broad, and situated 8^{3} miles E. $\frac{1}{2}$ S. from the southeast point of Tuvuthá. It is covered with trees, making its entire height 70 feet. A fringing reef surrounds it, which extends from a half to 3 cables from the beach. Turtle are caught here in the summer months. The landing is bad.

Thakau Tambu (Gordon reef) bears E. by N., distant $15 \frac{1}{3}$ miles from the conspicnous hill on the north-west end of Tuvuthá. It is nearly square in form, the length of the sides being $2 \frac{3}{4}$ miles. The barrier varies in width from one cable to 5 cables, and encloses a lagoon, which has a depth in the centre of 11 fathoms, and into which boats can enter from the westward at any time of tide. Small craitt can anchor in south-east winds outside of the reef on the north-west side, with the summit of Mumia just open to the right of the north hump of Katafangimarks which can be seen in clear weather.

Thakau Nokeva, situated 2 miles east of Yaroua, is an inregularly shaped reef, called by Commandex Wilkes "Freeman reef," and by the natives Thakau Nokeva. It is 2 交 miles long, 12 broad, and broken in two places on the north-west side. There is a small lagoon in the centre, having a depth of from 4 to 9 fathoms. The reef dries at low water.

Thakau Tasemarawa (Hawkins reef) bears South $2 \frac{3}{4}$ miles from Yaroua. It is triangular in shape, $1 \frac{2}{3}$ miles long east and west by $1 \frac{1}{2}$ north and south, and there is a small lagoon in the centre with a depth of 7 fathoms, into which there is no entry for boats. In south-east winds small craft can pick up an anchorage in 9 fathoms on the north-west side of the reef.

A vessel having occasion to visit Yaroua would find this useful, as there is no shallow water suitable for anchoring off the island.

THITHIA is a volcanic island, nearly square in shape. Its greatest breadth, which is from northeast to south-west, is 4 miles. The island is of a light colour, the undulating country being covered with grass, and widely scattered screw pines and casuarina trees. The highest point, which is towards the north-west, is 540 feet high.

A fringing coral reef, $1 \frac{1}{2}$ to 4 cables in width, surrounds the island. It is dry at low water, but boats can pass round the island at three-quarters flood.

Two Europeans own property on this island, who cultivate cotton and employ about 150 foreign labourers. About 120 tons of cotton is produced amually.
There are 398 native inhabitants, who occupy five villages at various points on the coast.
Anchorage for small craft can be obtained in winds from south to east in a bight of the reef on the north-west side of the island, opposite Torokraa village. There is also temporary anchorage to be found opposite a plantation one mile further south.
Landing can be effected on the north-west coast at any time. Good water is plentiful on the island.
Thalkau Nawa (Kneass reef), is $2 \frac{1}{3}$ miles southwest of Thithia. It is egg-shaped, one mile long, seven cables broad, and steep-to all round. There is a shallow lagoon in the centre.
NATAU is a coral island with a similar crater-like summit to Tuvutha. The rim, which forms the summit, and which is perpendicular on the sea face, is from 530 to 580 feet high, and the depression in the centre is about 200 feet below it.
The island is of a dark colour, being densely wooded, and appears from all points of view from seaward to be table-topped. It lies N.W. and S.E., is $3 \frac{2}{2}$ miles long by 2 miles broad, and is fringed, except at one place on the north-west side (where the summit rim overhangs the sea), by a coral reef which extends on the north-east side to a distance of 6 chbles from the shore.
There is no anchorage for vessels.
Boats can enter the reef opposite the village of Ndevo, on the east coast, by a passage 15 yards broad, through which the stream sets out at a speed of 2 knots an hour.
The number of inhabitants is 230, distributed among three villages, viz., Ndevo, Leku, and Narothivo.
Boats can pass round the island, inside the reef, at half-tide, and when the passage of Ndevo is not safe, landing can be effected by crossing the reef on the north-west side of the island.
Maafn rock (so named after the Tongan chief who reported its existence) is a coral head with 18 feet on it at low water, bearing N.E. $\frac{3}{3}$ N., 7 miles from the boat passage off Ndevo. The patch of discoloured water, of which it is the shallowest part, is hardly one cable broad, and has a depth on it of from 6 to 9 fathoms, coral and sand. The rock, which is about 5 yards in diameter, is on the northwest edge of the bank. It seldom breaks, and is diffcult to see in fine weather.
LAEEMLBA is a rounded, volcanic island, of a light colour, 4 to $5 \frac{2}{2}$ miles in diameter, with one projecting cape on the south side and several summits in the centre, about the same height and close together.
The highest point is mount Goodenough, which is a double peak 720 feet high; but Kendi-Kendi, conspicuous from its palm clump, is only 30 feet lower. A fringe of coral surrounds the island, which extends from 2 to 10 cables from the coast. Round the north coast it dries at a quarter ebb, but on the south side boats can pass at half-tide. To the castward of Lakemba is a lagoon enclosed by a burrier reef.

Anchorages.-Steam vessels can anchor in this lagoon in 13 fathoms, sand and coral, entering by the steamer passage, which may be found by bringing the right extreme of the island to bear W. by N. $\frac{1}{3}$ N., and conning the vessel in from the masthead with a favourable light. Numerous rocks lie in the passage.
The chief village of Lakemba is Toumbo, off which there is a small harbor capable of accommodating two small craft. The entrance is 30 yards broad, and lies N.E. and S.W. The southern, outer, horn breaks heavily.
In winds from S.S.E., through south and east to N.N.E., there is anchorage at Wankatelatha in 10 fathoms, sand, where good water can be taken on board from a pool on the beach, the passage through the reef being clear for boats, and the water easy of access.
Lakemba was the first island in the Fiji group which was christianized by English missionaries (1835). 7

It is now populated by one English missionary, four Ruropean settlers, 150 Tongans, 100 mixed race, and 717 Fijians, making a total of 972.

There is good land round the coast, but the undulating hills in the interior are not fertile, being covered with grass, casuarina trees, and screw pines. The lower ground abounds in kumulas and yams. The latter attain great perfection in this island, and have been known to grow to a length of 8 feet. Copra is exported, and paid as taxes. Turtle abound in the hot months, and fish is plentiful.

DUKATATANOA OR ARCO TSLBS Iie sereral miles to the east of Lakemba, and may be roughly described as triangular in shape and 80 miles round.

The greater portion of the chain is in the form of a bamier reef, but the centre is much broken up by detached reefs and groups of sunten rocks. Distant Q: miles from the north extreme of the reefs there is a channel $3 \frac{1}{y}$ miles wide, and 140 to 170 fathoms deep. In the lagoons the depth varies from 8 to 40 fathoms, sand and coral. On the south-east horn the sea breaks heavily. Working round it in the Alacrity no dangers could be seen to seaward from a height of 60 feet.

The English name of this reef is derived from the loss of the brig Argo in 1806 on its south-east end. A large number of copper bolts were found in 1878 near this poot, which are supposed to have belonged to that vessel.

Tanwe Trasi-Inside the barrier and 3 miles south of the north extreme of the Bukatatanoa or Argo reefs lies Vanua Masi, a conal islet, 80 feet high, the resort of sea birds.
It is covered with scrub, 4 cables long, one cable broad, and has sereral rocks off its east end. Landing is easy at half-tide on a sandy beach on the north const.

Bacon island is a white rock (covered with guano), 60 fect high, N.E. by E. $\frac{3}{4}$ R., $1 \frac{1}{4}$ miles from Gavua Masi, and 4 cables from the barrier.

BETD REET lies $4 \frac{1}{2}$ miles to the north-east of the Bukatatanoa reefs. It is of the barier character, 20 miles round, and encloses a lagoon which has three islets in it, but which appeared to be tolerably clear of coral heads, and to have a depth of 20 fathoms near the centre.

Reid haven.-This Iagoon has been called Reid haven. The best entrance for ships is to be found by bringing Late i Viti to bear N.E. by 巴., and conning from the masthead with a favorable light.

The three islets in Reid havea are called Late i Viti, Late i Tonge, and Booby rock. The two former are 60 feetand 50 feet high respectively, and white, being covered with guano; but Booby rock is only 10 feet high, and of a dark color.

Malan Benk lies S.E. one mile from the southeast born of Reid reef. The least water obtained was 8 fathoms, sand and coral.

There are tide rips around this bank and in the channel between Reid reef and Bukatatanoa reefs; and the current on both sides of the Reid reef appears to run to the south-east at a speed of half a knot an hour.

Aiwa islands are two uminhabited rocky islets, 210 feet and 200 feet high, honeycombed by the sea, and only a few yards apart. They are covered with bush, and connected by a reef which is awash at low water.
The west islet is 9 cables, the east 8 cables long, and both are about 3 cables wide.
A barrier reef which measures 19 miles in total leagth, and which has four sharp horns, trends round these islands, and sereral miles east and west of them. Within it is a lagoon with 20 fathoms, sand and coral, in the centre. N.N.W. of the islands there is no reef, and ships can enter at any time, picking up anchorage where convenient.

Between the north horn of the Aiwa reef and the Lakemba barrier the strait is $1 \frac{1}{4}$ miles wide. On both reefs there is but a light break.

VATJUA VATU is a rounded island, of coral formation, $7^{\frac{1}{2}}$ miles long N.W. and S.E., surrounded by a coral bamier which joins the shore in several places, and encloses a small lagoon fall of rocks. The summit is crater-shaped, like Turathá and Naian, densely wooded, and 310 feet above the sea at the highest point, which overlooks the south-east coast. Off the north side of the island the reef forms a horn, which stretches out more than a mile from the beach. Boats can cross the reef at half tide in the bight east of this horn, and there is a fair boat passage at high water on the west side of the horn
opposite a sandy spit of the island. Small craft are said to anchor here close to the reef in east winds, but it is not recommended.
There is one village containing about 100 inhabitants, who are badly of for food and water, and live on fish and cocoa-nuts. Taxes are paid in copra.
ONEATA is a low island lying N.E. by E. and S.W. by W., 21 miles long and half a mile broad, sitnated within a barrier reef, which measures 26 miles round, and which has a dangerous horn $5 \frac{3}{4}$ miles E. N. of Loa island. The highest point of the island overlooks the south-east coast, and is 160 feet above the sea. Sir cables to the north-east, and connected with Oneata by a sunken reef, is the small island of Loa (Observatory islet of Wilkes), which has a sharp summit 140 feet high.
The village is to be found in a sandy bay, on the southeast coast of Oneata, and contains 155 people, two of whom are European traders. Portions of the island are cultirated. There are few supplies, and water is difficult to obtain.

Oneata lagoon is the name given to the expanse of smooth water which surrounds the island, and which is enclosed by the bamier reef. It has four entrances which have been named Broken passage, Middle passage, Schooner passage, and Transit passage.

Broken passage is 1,600 yards across, with three patches in it dividing it into four channels. From the best of these channels the summit of Loa island bears S.W.
Middle passage is 500 yards across, and has 13 fathoms, sand and coral, in the centre. It is to be found by bringing the summit of Loa island to bear E.S.E. A very small coral head with 2 feet on it at low water, is situated on this bearing, 2 cables inside the centre of the passage. It may be passed on either hand.

Schooner passage is not well defined, and therefore not recommended for any but small vessels. From it Loa island bears E. by'S.

Transit passage is 400 yards across, and has 6 fathoms, sand and coml, in the centre. The right extreme of the hill on Loa in line with the north point of Oneata bearing East, leads to the passage, but must not be carried through, as the end of a spit of rocks connected with the north side of the passage lies on the bearing.

When in the centre of the passage, therefore, vessels should bear to the southward, steering for the right extreme of Oneata until the rocks are passed on the port hand. H.M.S. Barracouta entered by this passage in 1875.
Caution.-The passages into Oneata lagoon should not be navigated by sailing vessels with a fonl tide unless they have a commanding breeze.

Vessels bound for an anchorage off the village, if passing round the west side of the island, should keep about half-way between the reef and the shore, as there are rocks off the west point of the island.

MOTHE is a light-coloured round island, 24 miles in diameter, with one conspicuous timber-capped peak, rising in the centre, 590 reet high. It is surrounded by a barrier reef, which stretches for 7 miles to the south-east (enclosing also Karoni), forming a remarkable horn, called by the natives Na Potu. Vessels cannot enter the lagoon, but there is a boat passage on the east side, in a deep bight of the reef between Mothe and Karoai, and boats can pass over the barrier on the north-west side at half-tide.

Anchorage can be obtained outside the reef on the north-west side of the island, opposite the village of Natambua, protected from east through south to S.W. in 12 fathoms, sand, with the summit bearing S.E. by E. $\frac{1}{2}$ E.

There are 187 inhabitants distributed among three villages, the principal of which is Nassau, on the south coast. Water is plentiful on the island, but cannot easily be shipped. Bread-fruit, bananas, kumalas, and yams can be had in abundance.

Karoni, a small wooded coral islet, is situated $3 \frac{1}{2}$ miles S.E. by S. of the summit of Mothe. It has a conspicuous peak 120 feet high. Several rocks lio off its west coast.
The lagoon is comparatively shallow, the greatest depth obtained being 9 fathoms inside Na Potu. The deepest sounding north of Karoni was 7 Iathoms.

There are three well-defined reefs off the island of Mothe, viz., Thakau Lekaleka, which is in the middle of the Oneata passage, Thakau Van, and Thakau Motu. The two first are circular reefs of no large extent, with small lagoons inside of impounded water, but the last is an extensive danger, with the west side open, and a lagoon inside, in which the deepest water found was 23 fathoms.

Tide.-In the chamel between Mothe and Komo the flood sets to the southward and the ebb to the northward. The latter appeared to have but little strength both in this and the neighbouring channels.

KOMO ISLAND lies E.N.E. and W.S.W., and is $1 \frac{1}{2}$ miles long and half a mile broad. The summit is well marked by a clump of cocoa-nut trees, the fronds of which are 270 feet above the sea. The village, which is on the south-east side, contains about 100 inhabitants. A path leads across from the village to the north side of the island. Cocoa-nut trees are thick on the flat land round the coast, but the hills are covered with grass, casuminas, and screw pines.

Komo Ndriki.-Connected by a sunken reef with Komo is the dark rocky islet of Komo Ndriki, 70 fect high and $1 \frac{1}{2}$ cables in diameter. A coral reef surrounds the islands, and joins the shore on the east side of Komo, but north of the island forms a barrier, enclosing a harbor conspicuous for its moderate depth, good anchorage ground, and scarcity of coral heads; also for the facility with which it may be entered and departed from.

Komo harbour can be entered by vessels of large size, and there is good anchorage near the island in 5 to 10 fathoms, sand and shells. There are two passages, the east passage and the west passage, either of which is available for steam vessels, but sailing vessels of over 200 tons should choose the west passage, where there is room for working. A good light and favorable tide (or commanding wind) is necessary for either.

The East passage was used by E.M.S. Barracouta in 1875. It is 320 yards broad, but has two coral heads in it, the most southerly being nearly in midchannel, leaving a channel of only 140 yards between it and the east inner horn of the reef. This patch is awash at low water, and, though small, easily detected on a bright day. There is 9 fathoms, sand and coral, between the rock and the east reef.

The East passage is to be found by bringing the clump of palms on the summit of Komo to bear S.S.E.
The West passage is 550 yards broad. The rocks which form its east side are sunken, and seldom break.
From the West passage the cocoa-nut clump on the summit of Komo bears S.E. by E.

Anchorage of a temporary nature can be obtained outside the barrier reef, on the north side, in southerly winds.

A boat passage, which can be made use of in almost any weather, is to be found by bringing the cocoanut clump on the summit to bear S.W. by W., and the Mushroom rock, of the north-east point, in line with the right extreme of Komo. Boats can approach the village at all times of tide.

Between the Komo barrier and Thakar Vuite the flood sets to the southward and the ebb to the northward.

Thakau Vuite.-Separated from the Komo barrier by a passage $1 \frac{1}{4}$ miles in width, is the egg-shaped reef called Thakan Vuite (the Chicks reef of Willes), which is 23 miles long by 2 broad. There is a sand cay near its north-east end, which is 2 feet high and conspicuous in bright weather. The greatest depth inside the lagoon is 16 fathoms. Small craft can enter between the rocks on the north-west side.

Tides.-Between Thakau Vuite and Olorua reefs the llood sets to the south-west and the ebb to the north-east.

Olorua is a small but steep island, with three humps on the summit, the highest of which is 250 feet above the sea. The island is surrounded by a pear-shaped reef, which has a conspicuous horn 14 miles S.S.E. of the summit, upon which there is usually a heary break.

On the north side of the island there is a lagoon which has a depth of 8 fathoms in places, bat which is studded with rocks. Boats can cross the reef at high water on the north side, and in south winds small vessels might obtain temporary anchorage close
to the coral heads which front the reef here. There are no inhabitants.

Tavunasithi is a small circular, wooded, coral island, half a mile in diameter, and 200 feet high. It is surrounded by a fringing coral reef, through which there is no passage, but boats can cross over the north-west side of the reef at high water. There are no inhabitants. The island belongs to Kambara.
WANGAVA is a crater-shaped coral island, with no conspicnons feature, lying N.E. and S.W., 34 miles long, one mile broad, and 350 feet high. There are no inhabitants, the owners of the land living at the neighboring island of Kambara, and only visiting it to fish and gather cocoa-nuts. The natives report a salt lake in the centre of the island.

Survounding the island is a coral reef, which can be entered by boats and small vessels on the northwest side at any time of tide, as, at this part, it is much broken up into coral heads, with deep water between them. There is no anchorage worth the name.
Tides.-In the passage between Wangava and Kambara the flood runs E.S.E., and the ebb to the north-west.
KAMBARA is a dark, wooded, egg-shaped island, lying north and south, 41 miles long, and 3 miles broad, the highest land forming a rim overlooking the coast, and enclosing a shallow basin which is covered with useful timber. There is a hill on the north-west side, in the shape of a truncated cone, and having a clump of palms on its summit (470 feet high), which is conspicuous from all points of view, being 150 feet higher than the other elevations on the rim.

The island is surrounded by a coral reef which almost disappears north of the highest hill, admitting of good anchorage in 12 fathoms, sand and coral, protected from winds from N.E. through east and south to S.S.W.
There are four villages, the principal of which is Tokalau, under the highest hill and opposite the anchorage. The total number of inhabitants is 290 , forty-nine of whom pay taxes (in copra).
Canoes are built here, and kava bowls are manufactured in large numbers.

Directions for Anchoring.-Bring the cocoa-nut clump on the summit to bears. by E., and swinging room will be found in 12 fathoms, sand and coral, 1 in cables from a sandy beach, on which there is fairly good landing in boats, if care is taken to avoid the half-tide coral heads which front it.
Kumulas, kawais, pumpkins, and arrowroot can be obtained, but there are no facilities for watering.
Morambo, a small, wooded, uninhabited island, E. by N., 7 miles from the south point of Kambara, is 6 cables in diameter, and has a badly defined summit 160 feet high. It is surrounded by a fringing coral reef which stretches half a mile from the island on the south-west side. There is no anchorage. Boats can cross the reef through a break 3 yards wide on the north side.
NAMUKA is a dark, wooded, coral island lying east and west, 4 miles long and one mile broad, with a badly defined summit; 260 feet high, overlooking the north coast. A coral reef surrounds the island joining the shore at the west cape, and on the south and east sides, but opening out on the the northwest side, forming a harbor available for small vessels. The village is in a picturesque, sandy bay, on the south coast, and contains 127 inhabitants, 27 of whom pay taxes (in copra). Boats can communicate with the village by passing round the west cape at half tide, or the east cape at threequarters flood. A path leads across the island from the village to a sand beach half a mile east of the summit, where there are two huts.
Iamuka harbour has fais anchorage in from 7 to 13 fathoms, sand and coral. The entrance is between the coral patches, which, on the north-west side of the island (as is frequently the case), take the place of continuous banier reef.

Vessels drawing over 14 feet should not enter, as there are sunken coral heads between the patches.
Entrance mark.-By bringing the highest hill (rendered distinct by a sharp fall immediately eastward of it) to bear S.E. by E. a channel may be chosen where the space between the coral patches (awash) is over 100 yards. A good light is necessary, and for a sailing ship a favourable tide or command. ing breeze.

Wilkes reef lies $3 \frac{1}{2}$ miles N.E. $\frac{1}{2}$ E. of the entrance to Namuka harbour. It is 7 cables long by 3 cables broad, and dries at low water. Two cables south of the reef is a 2 -fathom bank.
The Yangasa cluster consists of four wooded, uninhabited, coral islands in one lagoon, which is protected by an irregularly shaped barrier reef 22 miles round, and open on the north-west side.

Yangasa Levu, the largest of the cluster, lies N. by E. and S. by W., and is $1^{\frac{2}{3}}$ miles long by half a mile broad, and densely wooded. It is table-topped, and 390 feet high. There is no landing.
Navutuiloma is densely wooded, and has a badly defined summit 210 feet high. Good landing can be found on the north-west-side.
Gavutha is a small densely wooded island with one sharp peak 240 feet high, easy distinguishable from all points of view.
Navutuira is densely wooded, and has a welldefined summit 270 feet high. Landing is good on the south-east side.
On the western portion of the barrier reef there are several conspicuous rocks showing above high water, which attract attention in passing.
This cluster belongs to the people of Mothe, who visit it occasionally to gather cocoa-nuts from Navutuiloma and Navutuira.
Thakau Levu is a coral reef situated of the northeast side of the Yangasa barrier and separated from it by a channel only 7 cables in width. It lies east and west, is open on the west side, and has a prominent hom forming its east end, upon which there is always a heavy break. O_{1} the south-western prong is a sand cay, 2 feet above high water, and conspicuous in bright weather.
Thakau Chikondua, $2 \frac{3}{-b}$ miles S.E. by E. of the sand cay on Thakau Levu, is a small, round, flat reef, half a mile in diameter.

Naiabo is a small coral islet, 40 feet high, covered with scrub and fringed with a high water-line of sand. It is surrounded by a triangular-shaped barier yeef which measures 3 miles round, and encloses a shallow lagoon of impounded water.
Thakan Peivareiva and Thakau Nasokesoke are two small fiat coral reefs between Naiabo and Ongea. They are steep-to all round. Both reefs dry in places at low water.

EULAMCA ISLAND is of volcanic and coral formation, and the circular shape of the island leads to the supposition that it is the rim of an extinct crater. The interior of the basin, on the south and east sides, is thickly studded with rocks, varying in height from 20 to 50 feet, but the north-west part is clear, and affords good anchorage to small craft.
The exterior consts of the island are surrounded by a coral reef of a fringing character, with a passage on the north-east side 6 cables long, 60 yards broad (in the narrowest part), and pointing'N. by E. and S. by W., which admits small vessels into the crater if taken with a commanding breeze and favourable tide. When wind and tide are in contrary directions there are overfalls in this passage which are dangerous for boats. The strength of the tide was estimated at three knots, but it moves directly through the channel. The passage occurs in the largest gap, between the detached islands which form the north-eastern limit of the crater, and can be found without difficulty, as it appears from seaward to be the natural entrance.
The highest point of Fulanga is 260 feet. There are about 260 imhabitants distributed among three villages, the chief of which is Monothake, on the south coast. Canoes are built here. There are indications of upheaval on the south-west side of the island.

Good water can be obtained on the north-west side of Fulanga at the village of Navindom.
ONGEA TSEAMDS.-Ongea Levu and Ongea Ndriki are two coral islands enclosed within a barrier reef which is 20 miles round, dry at low water, and through which there is a ship entrance on the western side.

Ongea Levu lies N. by E. and S. by W., is 4 miles long, and from one to 2 miles broad. It is densely wooded and 270 feet high. Numerous detached rocks are situated of its south coasts. The village is an inlet out of view from the lagoon, and contains 80 inhabitants, who are badly off for water and have no superfluous supplies.

Ongea Ndriki is an uninhabited, rocky, coral island lying east and west, $1 \frac{3}{6}$ miles long and one mile broad.

The summit is ill-defined, and 300 feet high. Several detached rocks fringe its north coast.

Ongea lagoon, the port Refuge of Wilkes, has fair anchorage in from 4 to 11 fathoms, sand and coral.

Barracouta passage (used by H.M.S. Barracouta in 1875) lies E. by S. and W. by N.. is 250 yards in width, and has 18 fathoms in mid-channel.

It is to be found by bringing the most northerly of the rocks lying off the north shore of Ongea Ndriki to bear E. 咅S.

The vessel must be conned from the masthead, with favourahle light. Sailing vessels camot enter with tide against them unless there is a commanding breeze.

The reef dries at low water on both sides of the passage. Situated 250 yards east of the south inner hora (with which it is connected by shallow water) is a coral head with 6 feet on it at low water, which must be left on the starboard hand.

The strength of the tide through Barracouta passage was estimated at 2 knots, the flood being rather stronger than the ebb.
On either side of Barracouta passage there is a good boat passage.
Thakau Teteika is a small, circular, flat reef half a mile from the north-east part of the Ongea barrier. It is three-quarters of a mile in diameter, and has a rock showing 2 feet above high water on its north-western edge.

Nuku Ongea is a triangular-shaped reef situated $3 \frac{1}{4}$ miles E. by S. from the south-east coast of Ongea Ndriki. Inside it there is a shallow lagoon, and near its north comer a sand cay 2 feet high.

WIDDS AND WEATHER.-In the Lau or Eastern group, between May and November 1878, the wind was observed from the Alacrity to blow strongest and with most persistence from S.E. by E. and E.S.E., occasionally rising to the force of a moderate gale in September and October. Very little rain fell during those months. Strong easterly winds are generally accompanied by haze, which, however, permits of breaking reefs being seen 3 to 4 miles off.
The barometer in the fine months seldom mores more than three-tenths of an inch, showing highest for strong E.S.E. winds (though perhaps accompanied by passing showers), and lowest for winds from N.W.
After two or three days of calms or light winds with westing in them, the south-easterly winds sometimes set in with a smart squall, first felt from a south or S . by W. direction, and quickly veering.
The following is compiled from the \log of H.M. schooner Alacrity:-
Between the 1st May and 20th November (204 days) the wind blew between South and S.E. for 39 days; from between S.E. and East for 111 days; from between East and N.E. for 19 days; from between N.E. and North for 7 days; and calms and light westerly winds were experienced for 29 days.
Current.-While surveying in the Lau or Eastern group the Alacrity experienced no current worthy of mention, except in the lagoon passages, where it was in nearly every instance distinctly tidal; and in the close neighbourhood of reefs, where it is probably notregular nor exceeds half a knot an homr.

Doubtless, during strong winds from S.E. to East, there is a slight surface drift, but it ceases when the wind moderates. Oil casks from vessels shipwrecked at Vanua Vatu in the summer months have been recovered at the Argoreef, showing that at this time of the year there is as much probability of an easterly as of a westerly set. In the lagoon passages the tide runs as much as 2 knots an hour, and the flood appeared to be as swift as the ebb.
Hydrographic Office, Admiralty, London,
December 9th, 1879.

* See Admiralty charts, Nos. 780 and 2691, of South-west Pacific And Fiji islands: Nos. 780 and 2691 , of South-west S.W. Pacific, Nos. 1 to 49 of 1873 .
tThis is one of the few barrier reefs in Fiji which have a sloping outer edge to windward, with a bank of soundings on which, in case of necessity, a vessel might anchor.
The majority of reeis in Fiji are steep-to on the south and east sides, and seldom admit of the possibility of bringing up With an anchor clear of the breaters.
Christion relision in the "Lau or Bastern group" profess the
There are two English Wesleyan missionaries (one at Lomaloma, and the other at Lakemba), and a native minister in every village throughout the group.
The rock reported in lat. 18
The rock reported in lat. $18^{\circ} 32^{\prime} 00^{\prime \prime} \mathrm{S}$, , long, $179^{\circ} 25^{\prime} 10^{\prime \prime} \mathrm{W}$., was searched for by the Alacrity, both in its geographical position and also in its position relatively with Vanua Vatu In neither of these positions, however, was anything seen from detecting banks with anything less than 2 fathoms upon them.

Faill Thme grable during the wontis of APRIL－谓AY， 1880.

FOR THM AUSTRATMAT COTONIMS，\＆\％，										BOR BUROPR， ITDTA，CTINA， 80 ．			
Per Rob Roy and Otway．				Overland．			Overland．				Por Rob Roy．		
OLOSE AT	DAY．	DATE．	TIME．	DAY．	DATE．	TLT空．	DAY．	DATEE．	TTME．		DAT．	DAPTE．	PTME．
Perth	Triday	Apl． 30	1 p．m．	Saturday		10 a．m．	Saturday	May 22	10 a．m．				
Fremantio	Triday	Apl． 30	${ }_{6} \mathrm{~g}$ p．m．	Satmrday	May 8	8 amm	Saturday	May 22	8 8 a．m．	4 ${ }^{-3}$	Monday ．．．	May 17	Noon．
Guildford	Triday	Apl． 30	8 ci．m．	Saturday	May 8	8 a．m．	Saturday	May 22	8 arm ．	\％	Monday ．．．	May 17	8 am ．
York ．．．	Wednesday	Apl． 28	9.90 arm ．	Wednesday	May 5	$930 \mathrm{a} . \mathrm{mm}$	Wednesday	May 19	9.30 arm ．	－\％	Saturday	May 15	980 mrm ．
Northam	Wednesday	Apl． 28	630 am.	Wednesday	May 5	$6.30 \mathrm{a} . \mathrm{m}$ ．	Wednesday	May 19	630 am.	A碞是	Sodurday	May 15	$630 \mathrm{m.m}$ ．
Newcastle	Wednesday	Apl． 28	10 arm ．	Wednesday	May 5	$10 \mathrm{am} . \mathrm{m}$ ．	Wednesday	May 19	10 ntra ．	ど気	Saturday	May 15	$10 \mathrm{n} . \mathrm{m}$.
Canniug	Tnesday ．．．	Apl． 27	2 p．m．	Friday ．．．	May 7	$2 \mathrm{p} . \mathrm{m}$.	Friday ．．．	May 21	2 p．m．	＋	Friday ．．．	May 14	2 pmo
Pinjarra	Tnesday ．．．	Apl． 27	6 am．	Friday ．．．	May 7	$6 \mathrm{a} . \mathrm{m}$ ．	Triday	May 21	$6 \mathrm{ar} . \mathrm{m}$ ，	¢ ${ }^{\text {¢ }}$	Friday ．．	May 14	6 a．m．
Bunbury	Friday ．．．	Apl． 30	$9 \mathrm{p} . \mathrm{m}$ ．	Thursday	May 6	1 p．m．	Thursday	May 20	1 p．m．	Q \％	Monday ．．．	May 17	9 prm ．
Vasse ${ }^{\text {V }}$ ，\ldots	Friday ．．．	Apl． 30	$10 \mathrm{p} . \mathrm{m}$ ．	Thursday	May 6	6 a．m．	Thursday	May 20	$6 \mathrm{a} . \mathrm{m}$.	Qope	Monday ．．．	May 17	$10 \mathrm{p} . \mathrm{m}$
Victoria Plains	Saturday	Apl． 24	8 p．m．	Saturday	May 1	8 р．m．	Saturday	May 15	8 p．m．	USg	Saturday	May 15	8 p．m．
Gingin ．．．．．．	Sunday ．．．	Apl． 25	$3 \mathrm{p} . \mathrm{m}$ ．	Sunday ．．．	Mny 2	3 prim．	Sunday ．．．	May 16	3 pm.	1．352	Sunday ．．	Mry 16	$3 \mathrm{p} . \mathrm{m}$ ．
Dongarra ．．．	Thursday	Apl． 28	$9 \mathrm{a} . \mathrm{mm}$ ．	Thussday	Apl． 29	9 a am．	Thursday	Moy 13	9 arm ．	－63	Thursdey	May 13	9 a．m．
Greenough ．．．	Thesday	Apl． 27	9 a．m．	Wednesday	Apl． 28	$6 \mathrm{p} . \mathrm{m}$ ．	Wednesday	Mny 12	${ }^{6} \mathrm{p} . \mathrm{m}$.	－ $8=$	Thursday	May 13	8 a，m．
Champion Bay	Tuesday	Apl． 27	1 p．m．	Wednesday	Apl． 28	$3 \mathrm{p} . \mathrm{m}$ ．	Wednesday	May 12	$3 \mathrm{p} . \mathrm{m}$ ．	म里豆	Thursday	May 13	1 pras
Northampton Bamister	Monday ．．．	Apl． 26	2 p．m．	Wedresday	Apl． 28	11 arm ．	Wednesday	Mray 12	11 am.	¢0 5	Wednesday	$\begin{aligned} & \text { May } 12 \\ & \text { May } 14 \end{aligned}$	11 a．m．
William River				Sunday	May 9		Sundoy ．．．	May 23			Thursday	May 13	
Arthin River		．．		Sumday	May 9		Sumday ．．．	May 23	．．．	，	Thumatay	May 13	
Kojonup	．	．		Sumatay－	May 9		Sunday	May 28	．．	时碞	Thrusday	May 13	
Mt．Barker	\cdots	\cdots	．．．	Monday ．．．	May 10		Monday	May 24	．．．	¢－＞	Weduesday	7ray 12	

MAETS HROML	EUROP星，80．	THATMS WROMI COEOMSEG，80．			
Due at K．G． Sound．	Trpected at G．P．O．	$\begin{gathered} \text { Tesve } \\ \text { Melbourne. } \end{gathered}$	Teave Adelaide．	Due at E．G．Gound．	Bxpeoted at Q.P.O.
Wednesday，May 12th	Samuday，May 15th	＂P．\＆O．Steatrme：＂ Wednesday，Apl．28th		Thesatay，May 4 dh	Triday，May 7 7h
Wednesday，May 20th	Saiurday，Mry 20th	Triday，May 14th	＂OTvaX：＂ Twilay，April 30th Baturday，May 1604	Wednesday，May 5th Thmathy，May 20th	Tridoy，May 7ha Sunday，May 23 rd

MOVEMENTS of the S．S．＂ROB ROY＂between GRRAMDTON and ALBANY：

The Correspondence by these Mails will be despatched to District P．Os．for distribution by first opportunity after receipt．

The English Mails to be despatched on the 30th April and 17th May will be due in London on the 10th and 26th June，respectively．

Letters for Registration will be received up to one hour before the time of closing the Mails．
Late Letters，on payment of postage and a fee of 6 d ．，may be posted half－an－hour after the time appointed for closing the Mails．
Newspapers and Book Packets must be posted one hour before the time of closing the Mails， otherwise they will not be forwarded until the next Mail．

MONPY ORDRRS can be obtained at the G．P．O．as under：
On the Australian Colonies，\＆e．，up to Thursday，April 29th，at 11 a．m．
$\begin{array}{ll}\text { Do．} & \text { Friday，May 7th，at } 11 \text { a．m．} \\ \text { Do．} & \text { Friday，May 21st，at } 11 \text { a．m．}\end{array}$
On the United Kingdom，up to Thursday，April 29th，at 11 a．m．
Do．Saturday，May 15th，at 11 a．m．
W．A．STONE，
General Post Office，Perth，？
17th April， 1880.
Acting Postmaster－General．

RBMTEN Mo. 1 of Pastoral Licenses renewed for the Tear 1880.
Crown Lands' Office, Perth, Sth April, 1880.
IE undermentioned Licenses for Pastoral Land have been renewed for the year commencing on the first day of January, 1880, and for the amount of rent specified opposite to each License respectively.

JOHN FORREST, pro Commissioner of Crown Lands.

No. of license.	Licensee.			Acres.	RENT.	No. or license.	Licensee.		Acres.	RENT.
	AVON.				88.80		AVON.			${ }_{1}^{2}$ s. ${ }^{1}$
A4199	J. Allcoel		\ldots	3000	300	A 99	John Mackie	\ldots	328	10
$\cdots{ }_{9139}$	H. Rertrom	...	\ldots	5650	${ }^{3} 100$	9173	do.		1800	1.16
A 2976	C. F. Brown	5120	530	A 3807	M. Macknoe ${ }^{\text {d }}$. ${ }^{\text {d }}$.	\ldots	3424	$1{ }^{1} 0$
, 4543	Geo. Bennett	...	\ldots	5000	500	, 2629	A. Martin ...	\ldots	2000	20
" 627	Geo. Best ...		\ldots	1000	100	:2630	do.	\ldots	4000	4.0
8619	S. E. Burges	1800	1160	9175	T. Morrell	\ldots	8000	80
8620	do.	...	\ldots	2394	280	A 3298	J. W. Morrell	6000	60
A 3877	do.			3000	300	\# 1264	do.	\ldots	3000	30
9138	T. Butterly	6400	680	\#3586	J. R. Morrell	...	3000	30
8399	do.		\ldots	7500	7100	$\because 2783$	do. ${ }^{\text {di. }}$...	3000	30
8226 9765	John Brown			6000 4000	$\begin{array}{lll}6 & 0 & 0 \\ 4 & 0 & 0\end{array}$	" 4486	F. Morrell, jun.	\ldots	5000	50
- 9768	C. Barrow	\ldots	4000 3000	4 0 3 0 0	-3 45887	J. H. Monger	\ldots	3000	30
${ }_{3}, 4582$	John Brown	2000	3 2 0	", 4509	do.	\cdots	3500 4000	310
3, 100	C. Chitty ...			1000	100	;,4510	do. $\quad .$.	\cdots	4700	414
, 3801	do.	3000	300	\% 4508	do.	\ldots	4000	40
\% 86729	C. Collins		\ldots	3000	3 0	$\because 4507$	do.	...	4000	40
- 4.4192	C. Chance			2000 4800	2 4 4 00	\%, 4263	do.	\cdots	3000	30
8503	W. Chidlow			5000	500	\% 34259	do.	\cdots	3000	60 3
8505	do.	...	\ldots	3100	320	\%, 4180	do. $\quad . .$.	\ldots	1760	116
A2634	do.		...	2460	2100	,, 2611	do.	6120	68
, 4146	W. Coates	\ldots	3100	$\begin{array}{lll}3 & 2\end{array}$	\% 837	do.	4000	40
$\because 4149$	${ }_{\text {do. }}^{\text {do }}$...			3000	$\begin{array}{lll}3 & 0 & 0\end{array}$	8617	do.	..	2000	20
$\because 4145$	J. Coates ...			3000	${ }_{3}^{3} 00$	9559	do. ...	\ldots	5910	519
20 4266	W. Chitney		3000	300	9110	do.	\ldots	250	10
\#, 23128	A. Clarke	...		7000	$\begin{array}{lll}7 & 0 \\ 6 & 0\end{array}$	9108	do.	..	3000	30
\% 4129	do.	\ldots	\ldots	3000	300	A 4171	J. O'Neil	\cdots	31000	${ }_{3}{ }^{3}$
8277	R. Clayton ...	\ldots	\ldots	2000	200	8572	Tohn Playle	\ldots	1800	116
A3881	do. ...	\ldots	\ldots	3000	$\begin{array}{lll}3 & 0 & 0\end{array}$	A 321	S. M. Parker	...	4000	40
8143	H. J. Cooke...			3000	300	8119	do.	...	4000	4.0
A 4142	do.	6350	${ }_{6} 70$	8088	do.	...	4000	40
\% ${ }^{4176}$	do.		\ldots	3000	$\begin{array}{lll}3 & 0 & 0 \\ 4 & 0 & 0\end{array}$	A 3834	do.	...	3000	30
	do.	\ldots		4000	$4{ }^{4} 0$, 3385	do.	\ldots	6000	60
,22355	Dempster, Bros.		\cdots	6400	$\begin{array}{lll}3 & 12 \\ 6 & 8 & 0\end{array}$	" 86812	J. Parish	\cdots	6000	6
\% 2638	J. Mr. Dempster		\ldots	8150	830	A 951	J. Xion ${ }_{\text {do }}$	\ldots	5000	55
, 4193	Edward Doncon	...	\ldots	3000	300	8491	S. S. Parker		7000	70
9605	do. ...		\ldots	2010	${ }^{2} 100$	9568	J. T. Parker ...	\cdots	6000	60
A 2069 4622	do -	...	\ldots	4000	4. ${ }^{4} 10$	A 4492	do.	3000	30
? 4622	do.	\ldots	4230	450	, 4332	do.	3800	316
", 4115	Jes. Draper...	\ldots	...	6000	$6{ }^{6} 0$, 3882	do. ${ }^{\text {do }}$		3277	36
" 8106	do.	\cdots	\cdots	467	$1{ }^{4} 00$	" 9145	Padbury, Loton, 8 ¢ Co		3000	30
8407	do.	...	\ldots	5000	500	9148	do.		6000	50 60
A 2767	do. ...	\ldots	\ldots	4760	4160	8912	do.	.	4000	40
, 4112	Thos. Davies	...	\ldots	3600	3120	9146	do. ...		2326	27
, 4118	do.	\ldots	3000	$\begin{array}{lll}3 & 0 & 0 \\ 3 & 0 & \end{array}$	9943	do.	\ldots	650	10
" 26619	Jo. ${ }^{\text {do }}$.	..	\ldots	3000 4000	$\begin{array}{llll}3 & 0 & 0 \\ 4 & 0 & 0\end{array}$	A 4168	do.	...	3000	30
32619	John Eaton...	4000	400	, 11165	do.	..	3000	30
" 9646	W. Eaton ...	\ldots	\ldots	3000	$\begin{array}{lll}3 & 0 & 0 \\ 1 & 0 & 0\end{array}$	$\because 4167$	do.	\ldots	3000	30
A 1265	A. Eaton ...		\ldots	6000	$\begin{array}{llll}6 & 0 & 0\end{array}$	", 3866	W. Roser, jun,	\cdots	4000	$\begin{array}{ll}3 & 0 \\ 4 & 0\end{array}$
? 4181	A. J. Edwards		...	3000	300	;, 3868	do. ...		3613	318
${ }^{2} 3880$	C. T. \&T. Edwar		...	5009	500	, 9817	Thos. Reynolds, jum.	...	3000	30
$\cdots 3804$	James Forward		...	3000	$3{ }^{3} 00$,3318	To. ${ }^{\text {do }}$...	..	3000	30
,33581	$\begin{aligned} & \text { do. } \\ & \text { do. } \end{aligned}$	\ldots	...	3000	$\begin{array}{lll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	" 69	W. A. Robinson	4000	40
"9112	James Fleay ${ }^{\text {a }}$		\ldots	1200	$\begin{array}{llll}3 & 0 & 0 \\ 1 & 4 & 0\end{array}$	2,3533	do.	\ldots	6000	${ }^{6} 0$
A 3882	A. Forrest .		\ldots	3000	1 0	\#, 4565	do. $\begin{aligned} & \text { do. } \\ & \text { do. } \\ & \end{aligned}$	\ldots	3000	$\begin{array}{ll}3 & 0 \\ 3 & 0\end{array}$
9157	Thos. Ferguson	\ldots	...	3800	3160	\%, 4.183	do. \quad... $\quad .$.		3432	39
A 4265	J. H. Gregory	\ldots	\ldots	5966	${ }_{6}^{6} 000$	\#, 4185	do.		6895	618
, 4629			...	3009	$\begin{array}{lll}3 & 0 \\ 5 & 0\end{array}$	\% 4119	E. Robinsom \& Co.		3000	30
, 3831	do. \ldots	5860	5180	, 4118	do.	\ldots	3000	30
",4121	J. \& W. Gregory	...	\ldots	3000	$\begin{array}{lll}3 & 0 \\ 3 & 0\end{array}$	\% 4117	do, ... $\quad \therefore$	\ldots	3000	30
\#, 8889	J. H. Gregory	...	\ldots	3000 3650	$\begin{array}{lll}3 & 0 \\ 3 & 13 & 0 \\ 0\end{array}$	$\because 9116$	do.	\ldots	3000	$\stackrel{3}{5}$
2,3878	I. Hancock...		...	5363	580	9184	do. $\quad .$.		5000	50
9615	E. Hamersley		...	3900	3180	A. 357	do. $\quad . .$.	\cdots	3000	30
-8512	Exrs. late E. Ham	mersle		4809	4160	\#3541	do.	\ldots	3000	30
A 389	Willinm Hughes	3700	3140	\% 3542	do.	\ldots	3000	30
, 4287	T. Hozan		\ldots	3000	300	\% 4099	do.		3000	30
\#3 3808	Chas. Jas. Heal	\ldots	...	3000 3000	$\begin{array}{llll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	\#3308	James Roe ...	\ldots	1000	10
",3869	S. Hamersley		\ldots	3000	$\begin{array}{llll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	" 81641	A. G. Robins	\ldots	6706 4000	6150 4 4
\% 2250	Habgood, A bsolon	II, \& 8		4000	4.00	A 3395	Smith, Bros.	\ldots	3000	${ }_{3}^{4} 0$
8680	Thos. Lockyer	,	...	6000	6180	,, 3888	C. Smith ..		3000	30
A 811	do. ...	\ldots	...	1000	100	9588	do.	\cdots	1000	10
\% 41799	J. Lo. \quad. ${ }^{\text {doyd }}$...	\ldots	3000	$\begin{array}{llll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	9469	do.	\ldots	5000	500
\% 3136	P. Lyuch \ldots	\ldots	\ldots	7500	710	A 9 9577	do.	\cdots	5800 5300	516
,2622	Z. B. Lemnard	525	100	9579	A. ${ }^{\text {E G }}$ (Shenton \ldots	\cdots	925	50 10
8683	Jos. Lockyer	\ldots	...	7500	7100	9580	do.		450	10
A 4135	William	3000	${ }_{3} 00$	A 3864	J. Scott ...		4213	45
\% 4153	William Lukin	\ldots	...	3000	300	8524	Jas. Sinclair	1260	160
38154	do.	3197	$3{ }_{3}^{3} 40$	A. 1975	Robert Sheehy	978	100
\#3872	Frederick Leee	.	\cdots	3000	$\begin{array}{lll}3 & 0 \\ 3 & 0 & 0\end{array}$	", 4854	Andrew Strange ...	\ldots	3000 4000	$\begin{array}{ll}3 & 0 \\ 4 & 0\end{array}$
, 4156	William Lakin		\ldots	3666	3140	"8398	Richard Strange ...	\ldots	3000	$\frac{4}{3} 0$
$\because \frac{4157}{952}$	do. \quad.	...	\ldots	3000 4000	3 0 4 0	A 9833	do.	3000	300
", 992	do.	\cdots	...	4000 3000	$\begin{array}{llll}4 & 0 & 0 \\ 3 & 0 & 0\end{array}$	8878	W. Shaddick ...	\ldots	6500	6100
9594	L. Lrukin \cdots	\cdots	\ldots	2240	250	88745	do.		6000 5000	$\begin{array}{llll}6 & 0 & 0 \\ 5 & 0 & 0\end{array}$
A 3889	do. \ldots	.	\ldots	3140	330	9602	do. $\quad . .$.	\ldots	3000	$8{ }^{5} 0$
A 8587	Charles Lloyd	\ldots	\ldots	4750	4150	A2610	do. $\quad . .$.	\ldots	5492	5100
A 814	J. Mioyd MoGrath		\ldots	1000 1000	$\begin{array}{llll}1 & 0 & 0 \\ 1 & 0 & 0\end{array}$	$\because 3022$		\ldots	3000	30
A 2085	Geo. Monger	...	\ldots	1000 3000	$\begin{array}{llll}1 & 0 & 0 \\ 3 & 0 & 0\end{array}$	\#3831	G. Smith	\ldots	3000 4000	$\begin{array}{llll}3 & 0 & 0 \\ 4 & 0 & 0\end{array}$
, 4141	do. ...			3000	300	\%,3488	G. do , \quad...	\ldots	8500	4 3 10 0
"3873	Patrick Murpley	...	\ldots	3000	300	\% ${ }^{\prime \prime} 12127$	do. $\quad . .$.	\cdots	3000	${ }_{3} 100$
8689	C. G. Mead.			5000	500	\% 4130	do.		5895	518
A 3859	W. Marwick	3000	300	\# 4126	do.	\ldots	3000	30

RETURN No. 1 of Pastoral Licenses renewed for the Year 1880.-(continued.)

RETURN No. 1 of Pastoral Licenses renewed for the year 1880.-(continued.)

No. of license,	Licensee.		Acres.	RENT.	No. of	Lieensee.	Acres.	RENT.
817	MURRAY.		1500	$\text { es. } \mathrm{d}$	8883	SWAN.	4000	${ }_{4} \mathrm{~s}_{0} \mathrm{~s}_{0} \mathrm{~d}_{0}$
8178	do do do	\ldots	2000	${ }_{2}^{1} 00$	A 4338	\cdots W. Minchin $\cdots \quad \cdots \quad \cdots$	3000	$\stackrel{3}{3} 0$
8479	do	\ldots	3000	300	, 4336	S. Mortimer ...	5000	500
- 81818	do		4000	4 1 100	$\bigcirc 4343$	do	7300	76
A 8170	Theodore Fawcett ${ }^{\text {a }}$		${ }_{6300}$	$\begin{array}{lll}10 & 0 \\ 6160\end{array}$	\cdots	Chas. Morley do and	3455 5148	310 50 50
8636	Joseph Logue, jun.	\ldots	8000	800	" 232	do \quad...	3000	300
8485	William Pumphrey		3000	$3{ }^{3} 00$	8828	R. Mayo \ldots... \ldots... \ldots	1000	0
8181	William Pollard	4000	4.00	8829	do ...	4000	4.0
A 4028	do		3000	300	A 4056	H. Martin	3000	${ }_{3} 0$
$\begin{array}{r}8486 \\ \hline\end{array}$	Levi Green do . a		6000 4000	$\begin{array}{llll}0 & 0 \\ 4 & 0 \\ 4 & 0 & 0\end{array}$	8863	J. Cockman...	3000	${ }_{3}^{3} 0$
A A 4038	Robt. Holmes		46000	40 6	A 8838		3000 3000	30 30 30
\#, 4020	Thos. C. Key ...	\ldots	5000	500	, 2888	J. O'Neil ...	1000	10
„, 4018	John Mcatee ...		3000	300	,, 3567	do	3000	30
, 4016	J. G. Muxay ...	\ldots	3000	300	\% 973	Osborne \& Clarkson ...	9000	90
$\because 4017$	do	\ldots	4000	$\begin{array}{llll}4 & 0 \\ 3 & 0\end{array}$	" 234	W. Osborme...	4000	4 4 10 0
\#, 8113	do $\begin{aligned} & \text { do } \\ & \text { do } \\ & \text { a }\end{aligned}$		3000 1000	$\begin{array}{llll}3 & 0 & 0 \\ 1 & 0 & 0\end{array}$," 974	James Roe do	1600 2680	${ }_{2} 114$
,, 9684	do		1000	100	,',3498	do	1000	10
" 4022	Edward McLarty ...	\ldots	4000	4.0	\#, 3974	Thos. Sadier \ldots	2870	218
, 4022	do	\ldots	3200	${ }^{3} 600$	$\xrightarrow{8448}$	W. J. Spice	3800	${ }_{3} 16$
" 4023	John MoLarty		38000	$\begin{array}{lll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	A 4055 .4320	H. Eliliott ${ }_{\text {H }}$	3000 3000	$\begin{array}{ll}30 \\ 3 & 0\end{array}$
A 175	W. Cornish ...		4000	400	'9446	Geo. Sewell ...	1300	6
8396	T. W. Oakley	3000	300	A 6	Geo. Sadler...	1138	13
A 4019	do ...		3000	3 0 3 0 10		G. W. Smith	4000	$\begin{array}{llll}4 & 0 \\ 3 & 0\end{array}$
? 94049	${ }_{\text {A. }}^{\text {do }}$ R. Pichardson \ldots	\ldots	3000 2000	$\begin{array}{llll}3 & 0 & 0 \\ 2 & 0 & 0\end{array}$	\#4340	M. Thomas ...	3330 2565	3 7 2 12 10
9682	Henry Sutton ...		5000	500	", 4337	do $\quad \ldots 0 . . .$.	3000	30
A 4036	do		5000	500	,24051	S. W. Viveash	3000	30
, 1203	Charles Tuckey	\cdots	1140	130	8855	E. Wilson ...	1000	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$
	NELSON.				${ }_{8}^{4} 4811$	E. D. Warren ${ }^{\text {do }}$... \ldots	3000 760	10
A 4046	T. Dickson \& Co. ...		3000	$\begin{array}{llll}3 & 0 & 0 \\ 8 & 0 & \end{array}$	A 1671	E. S. Wells $\ldots .$.	3000	${ }_{1} 10$
$\begin{aligned} & , 4047 \\ & \# 4048 \end{aligned}$	W. Forrest, ${ }_{\text {jun. }}$...	\ldots	8000 8000	$\begin{array}{llll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	${ }_{4}^{84971}$	W. Yates York \ldots... \ldots... \ldots	1000 3000	$\begin{array}{llll}1 & 0 & 0 \\ 3 & 0 & 0\end{array}$
", 4042	do		6000	600		W. Yates		0
„ 4041			3000	300		VICIORIA.		
,3607	John Giblett	\ldots	3000	300	8890	W. Brockman	5000	500
", 66610	G. Glyde \ldots	\ldots	5000 3000	50 3 00	A1347	N. W. Cooke	5000 5000	50
", 147	John Higgins		3000	$\begin{array}{lll}3 & 0 & 0\end{array}$,, 3148	do	6000	0
\#, 3579	J. Mottram		8632	81.30	,, 4512	do	3000	30
„ 3612	do ...	\ldots	7000	700	, 4513	do	3882	318
, 02398	M. A. Smith ${ }^{\text {do }}$		3000 5000	30 5	, 3514	H do \ldots	${ }^{3550}$	312
", 2022	Geo. Shenton	\ldots	4000	${ }_{4} 400$	", 14235	H. Jdo cooke... \quad...	5000 3000	5 0 3 0 0 0
, 4044	do ...	\ldots	3000	300	9254	H. Hamersley	4000	0
9079	J. G. Lee Steere .		4800	416	A 793	do	4000	400
A 3601	do	\ldots	3400	380	9308	R. M. Habsood	2500	2100
	SUSSEX.				9218 A 3380	W. Long …	6000	$\begin{array}{llll}6 & 0 \\ 5 & 0 \\ 5 & 0 & \end{array}$
A 4018	John Higgins		3000	30	,, 3184	do ...	2000	200
\% 151	W. D. Moore	...	5000	500	„, 3039	do	4000	0
					,2543	J. H. Monger	3000	300
A 4052	David Anderson				, 31233	W. Padbury	3000	30
8354	ju. Andrews ...		2000	${ }_{2} 000$	\%, 1625	Padbury, Löton,	8000 2600	$\begin{array}{lll}8 & 0 \\ 813 & 0 \\ 20\end{array}$
A 4059	Jumes Atkinson		5186	540	", 3577	Rosendo Salvado	3000	30
	do		4000	400	„, 3635	do	3000	30
8516	Johm Bateman		1000	$\begin{array}{lll}1 & 0 \\ 5 & 0\end{array}$	" 828	do	3000	30
-8518	do ...	\ldots	5000	500	\# 4558	do	3000	30
A 4275	do	\cdots	3000	$\begin{array}{llll}3 & 0 \\ 3 & 0 \\ 3 & 0\end{array}$, 4559	do	3000	$30^{0} 0$
$\cdots 4391$	Trustees W.		3680	3140	" ${ }_{6609}$	Thomas whitield ${ }^{\text {a }}$...	8928 4000	40
8551	H. Brockman ...		4000	400		- ${ }^{\text {a }}$		
A 4345	W. Brockman .		3000	$3{ }^{3} 0$		WELITNGTON.		
8857 A 3276	John Buckingham	\ldots	2550	2110	A3207	J. Bailey	3000	300
, C 4651	B. D. Clarkson do ...		3000	5100 300	", ${ }^{\text {, } 4301}$	John darron	3000	${ }_{3}^{3} 0$
" 8642	James Corbett \ldots		1000	$\begin{array}{llll}1 & 0 & 0\end{array}$	\#, ${ }^{3} 8303$	$\begin{array}{llll}\text { do } & \ldots & . . . & \ldots \\ \text { do }\end{array}$	3000	3 3 3
A ${ }^{4326}$	Richard Cockram...	\ldots	3000	$\begin{array}{lll}30 \\ 4 & 0 \\ 4\end{array}$	„ ${ }^{4304}$	R. Hoops ...	3000	30
	$\begin{array}{ll}\text { do } \\ \text { do } & \text {... } \\ \end{array}$		4100 4000	40 40 40	$\cdots 4305$	$\begin{array}{llll}\text { do } & \ldots . & \ldots . & \ldots \\ \text { do } & \cdots & \cdots\end{array}$	3000	
, 4327	Jolin Cockram		3000	${ }_{3}{ }^{1} 00$	\#, 81801		4000	$\begin{array}{llll}3 & 0 & 0 \\ 4 & 0 & 0\end{array}$
, 33270	J. J. Clnue \& Co. ...	\ldots	7040	710	,0 1802	do $\begin{array}{ll}\text { do } & . . \\ & . . \\ \end{array}$	4000	40
-	M. J. do J. Clune ...		5000 8000	$\begin{array}{lll}51 & 0 \\ 3 & 0 & 0 \\ 3 & 0\end{array}$	9338	John Fouracre	2000	$2{ }^{2} 00$
,, 4274	do $\begin{array}{ll}\text { do } & \ldots \\ \end{array}$		3000	${ }_{3}^{3} 00$	A 10204	H. W. Fleay $\quad \cdots \quad \cdots \quad \cdots$	2000 4000	0
" 251	John Dewar		700	$1 \begin{array}{ll}10 & 0\end{array}$	", ${ }^{\text {, }} 4590$	Habgood, Absolon, \& Co.	5000	${ }_{5}^{4} 0$
8393	Thomas S. Darch ...		1.536	1110	,3,3571	Hooley \& ${ }^{\text {dew }}$	4000	40
8894	do ${ }^{\text {do }}$. ${ }^{\text {a }}$...	2336	270	, 4288	Joseph Logue, jun.	3000	30
- 8875	Robt. de Burgh ...		1000		$\because 4298$	Waward Lilly ...	3000	300
A 4334 ,$\quad 4325$	$\begin{array}{lll}\text { do } \\ \text { do } & \cdots & \ldots\end{array}$	\ldots	3000 3000	$\begin{array}{lll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	- 454581	William Lukin	6000	600
, 88545	B. Duffy $\begin{array}{cc}\text { do } & \cdots \\ \end{array}$	\ldots	1850	3 1170 10	$\cdots 34581$		4000 4000	4 4 4
A 4574	Matthew Edwards		3000	300	", 24299	Thos. H. Pollard $\quad .$.	3000	30
, 4329	John Fitzpatrick ...		3000	3 0 0 0	", 2246	E. Robinson ${ }^{\text {c Co... }}$...	5000	50
$\because 4328$	do \ldots		3000	300	\# 4315	W. Shaddick	3000	30
, $\because 3091$	Fitzpatrick \& de Burgh.		4000 3000	40 300 300	" 20095	John Shaddick	4000	${ }_{4} 0$
\%, 4050	C. W. Ferguson ...		3000 4000	$\begin{array}{ll}3 & 0 \\ 4 & 0 \\ 4 & 0\end{array}$	A 28230	Jas. G. Lee Steere $\quad .$.	5000 864	50
\% 383	Thos. Ferguson ...	\ldots	3000	${ }_{3}{ }^{4} 00$	-,4399	C. C. Smith... $\quad . .$.	3800	$\frac{1}{3} 0$
8879	H. Gibbs .		1000	1.00	", 4277	Geo. Walton ...	3000	30
	do ...		2000	200	,, 3002	do	3000	0
A 43314	w ${ }^{\text {do }}$... ..		3880	3180	12 4286	Nicholas Veale ...	3000	300
, 4335	W. I. Gibbs ...		${ }_{5116}^{516}$	590				
$\cdots 8738$	- do	\ldots	2120	${ }_{2}^{2} 30$		WILLIAMS.		
A 4322	W. Hamersey		${ }_{3000}$	$\begin{array}{ll}1 & 0 \\ 3 & 0 \\ 0\end{array}$	A 908 , 4090	J. Bailey do	3000 3000	$\begin{array}{lll}3 & 0 \\ 8 & 0\end{array}$
, 4323	William Haddrill ...		2350	270	$\because 8484$	$\begin{array}{llll}\text { do } & \ldots & \ldots & \ldots \\ \text { do } & \ldots \\ \end{array}$	3000	${ }_{3}^{3} 0$
$\because 3499$	Samuel Jones	3000	3 7 0	", 4072	W. Bingham \cdots	3600	312
, 35837	Thomas Jones	\ldots	7000	${ }^{7} 00$	\# 4385	Batt and Pollard	4000	40
$\because 1673$	do	3000	300	" 926	T. Brandrick	5000	50
" 84845	do ...	\cdots	3000	${ }^{3} 00$	${ }^{9693}$	do	5000	50
A 4339	W. T. King \ldots	.	3000	${ }^{3} 000$	A4083	do	5000	0
,, 4342	do ${ }_{\text {do }}$		8850	${ }_{317} 17$	", 928	Jas. Crane \ldots	-6825	${ }_{4}^{617}$
, 1925	D. \& W. King		3000	310 0	", 4062	Jas. drame $\quad . .$.	3000	${ }_{3}{ }^{4} 0$
$\because 2732$	Thomas Kelly		4540	4.110	" 8161	W. Cornwali $\quad . .$.	2000	20
" 3230			6600	6120	8162	do $\quad . .1$	2090	20
, 23446	W. T. Loton		3000	300	9125	Richard Clayton	8000	80
" ${ }_{9412}$	I. Loukin		2090 5000	$\begin{array}{lll}2 \\ 5 \\ 5 & 2 & 0 \\ 0\end{array}$	A 260	do	7000	70
	บ. Cu (${ }^{\text {a }}$						3000	3

RETURN No, 1 of Pastoral Licenses renewed for the Year 1080--(coniinued.)

No. of license.	Licensee.			Acres.	RENT.	No. or license.	Licensee.			Acres.	RENT.	
	WILITAM				£ s. d.		WILTIA					s. d.
, 4071	Richard Clayton		..	3245	350	A 717	J. H. Monger		\cdots	8000		0
8811	John Eddie...		...	4000	400	8962	do		...	1000	1	0 0
A 1023	do	4000	4.00	8964	do			3000		0
8984	Jas. Eleny ...			4360	480	A 15	James Pollard			4000		0
A 4076	H. W. Mleay			3000	${ }^{3} 000$, 1022	John Pollard			1000		00
8969	Exrs. late T. C. G			5000	500	$\because 4061$	John Page ...			3000		0
A 4501	T. Gibbs \ldots			3000	300	?,4086	Aun Pollard			1780		160
, 3574	W. J. Gibbs...	3000	300	, 4085	Thomas M. Poll			3000		0
, 3007	G. Glyde	3000	300	$\because 4089$	William Pollaxd			3000		0
, 1662	do	3000	${ }^{3} 000$	8134	Padbury, Loton	Co.	...	3000		00
,, 2508	do		3000	300	8983	do			5000		00
$\because 4073$	do	...	\ldots	3800	3160	8940	do ...		\ldots	4000		00
, 4074	do	...		3322	370	8936	do	4000		0
, 4886	G. Glyde \& Sons	\ldots	...	3000	${ }^{3} 000$	A 1656	do ...	- $*$	-	3000		0
" 79	William Harxis	5000	$\begin{array}{llll}5 & 0 & 0 \\ 3 & 0 & 0\end{array}$, 2564	do	-	6000		0 0
", 193	do	3000	$\begin{array}{llll}3 & 0 & 0 \\ 7 & 0 & 0\end{array}$, 2835	do $\quad .$.	\ldots	...	7200		$\begin{array}{cc}4 & 0 \\ 0 & 0\end{array}$
	do \cdots	\ldots	\ldots	7000	7 0 0 3 0	- 497376	do	\ldots	..	3000		$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$
" 4065	Chas. Hamersley	\ldots	\ldots	3000 3000	$\begin{array}{lll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	" 88989	H. Qonrtermain	.		3000 2000		$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$
",4067	do	\ldots	5100	580	A 4394	John Stephens			5000		0
8302	Mi. Hamersley	\ldots	\cdots	2000	200	, 4451	Edward Smith	...	,	5000		0 0
8460	do		...	4000	400	8809	do		...	4000		0 0
A 346	do	3000	300	8947	Geo. Shenton	\ldots	...	8000		0 0
, 4381	H. Hagerty ...	\ldots	\ldots	3000	300	8918	do	\ldots		5000		${ }^{0} 0$
, 3236	Hooley \& New	\ldots	...	4000	400	8950	do	.	,	3000		00
, 1249	do	\ldots	\cdots	1880	$1{ }^{1} 60$	8953	do ...	\cdots	...	3500	31	100
",4077	do \ldots	...	\ldots	3000	300	8319	do	\cdots	.	6000		0
",4068	Edward Lilly	...	\ldots	3000	$\begin{array}{llll}3 & 0 & 0 \\ 6 & 0 & 0\end{array}$	A 2520	do	\cdots	...	3000	3	0
" 4064	do	\cdots	\ldots	6000	$\begin{array}{llll}6 & 0 & 0 \\ 3 & 0 & 0\end{array}$	"2521	do	\cdots	\ldots	4000		0
34081 $\#, 4616$	do	\cdots	\cdots	3000 3000	$\begin{array}{lll}3 & 0 & 0 \\ 3 & 0 & 0\end{array}$	2, 3237	do	\ldots	\cdots	4000 4000		$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$
", 4617	do		\ldots	6000	600	„, 4379	do		\ldots	8000		${ }^{0} 0$
", 200	William Lukin	\ldots	...	4000	400	„, 4880	do		\ldots	3000		00
„, 193	do		...	4000	400	, 4387	do ...		,	3000		0
\% 199	do	5000	500	, 4378	do			4000		${ }_{0} 0$
8763	do	\cdots	\ldots	5000	500	, 4346	do	...		4000		0
8253	do			5000	500	, 2527	John Taylor			5000	5	0 0
A 1163	do			5000	500	" 547	F. White .			3000		$\begin{array}{ll}0 & 0\end{array}$
8959	Geo. Monger			2000	${ }_{2} 00$	", 380	do	...		3000		0 0
A 4381	J. He. Monger	...		3000	300	, 4137	G. \&J. Watts	...	\ldots	3000		$\begin{array}{ll}0 & 0 \\ 0 & \end{array}$
, 41.84	do	...	\cdots	5860	5180	,, 4584	do	3000	3	00

NOTICE.

A^{L}
LT persons wishing to have their names placed upon the Electoral List for the Swan District, must make application to the Clerk at the Guildford Court House, on or before the 10th of April, after which date the List may be seen at the Court House up to the 24th of April.

All objections to names on the List must be made to the Clerk, and to the persons objected to, on or before the 24th of April, and a List of such names (if any), will be kept posted up at the Court House during the eight days preceding the 4th of May.

The Court of Petty Session for the revision of the said List will be held at the said Court House, on Tuesday, the 11th day of May, at 10 o'clock, a.m.

ROWLEY C. LOFTIE, Resident Magistrate.

March 15, 1880.

ELECTORAL DISHRICT OF PERTH.

TTHE list of electors for the district may be perused at the office of the undersigned, from the 10th to the 24th April next.

Persons desiring to have their names inserted on the Electoral List, must apply on or before 10th April. Objections to voters to be made in prescribed form, on or before the 24th April.

The Court of Petty Sessions, for revision of the Electoral List, will be held at the Police Court, Perth, on Monday, the 10th day of May next, at 11 a.m.

JOHN ADAM, Clerk to Magistrates.
Perth, 25th March, 1880.

\mathbb{N}OTICE is hereby given that all persons desirous of having their names inserted on the Electoral Roll for the District of Vasse, must apply personally or otherwise to the Clerk to the Magistrates, on or before the 10th April.

All objections to names on the Electoral Roll must be sent in on or before the 24th April.
A Special Session of the Justices for the revision of the Electoral Roll of the District of Vasse, will be holden on Friday, 14th May next, at 10 a.m.
W. H. MILNE,

Clerk to Magistrates.
Resident Magistrate's Office, \}
Vasse, 31st March, 1880. $\}$

NOTICE.

ALL persons wishing to have their names A placed on the Electoral List for the Murray and Williams District, must make application by letter or otherwise to the Clerk at Pinjarrah or Williams Court House, on or before the 10th April, after which date such list may be seen at the said. Court Houses up to the 24th April.
All objections to names on list must be made to the Clerk, and persons objected to, on or before the 24th April, and a list of such names will be kept posted up at the Courts during the eight days preceding the 4th of May.

Court of Petty Session for revision of the Electoral List of the Murray and Williams District, will be held in the Court House, Pinjarrah, on Saturday, May 15th, at 11 o'clock in the forenoon.
J. G. MURRAY, R.M.

Resident's Office, Pinjarrah, 16th March, 1880.

HE undermentioned PHOTOLITHOGRAPHED PLANS are now on sale at this Office, or can be obtained from the Government Resident of the District:-

IAND.SAIES.

Crown Lands' Office, Perth, 20 th Aprit, 1880.

THE undermentioned Allotments of Land will be offered for Sale, at Public Auction, on the dates and at the places specified in the Schedule below, at one o'clock, p.m.

SCHEDUTE.

JOHN FORREST, pro Commissioner of Crown Lands.

Crown Lands' Office, Perth, 9th April, 1880.

\mathbb{R}ETURN of Applications for Leases and Licenses of Crown Lands approved during * March, 1880 :-

No.	Applicant.	Class.	Acres.	Rent.
1709	AVON.		100	$\sum_{5} \mathrm{~s}$.
148	John Coyne ...	S.0. Leac.	100	50
300	S. W. Viveash ...	"	100	50
326	Do... \ldots	"	100	50
383	W. A. Hughes	"	100	50
387	F. S. Watts ...	"	100	50
407	S. Dowsett ...	"	100	50
553	I. Ingram \ldots	"	100	$\begin{array}{ll}50 \\ 5 & 0\end{array}$
713	Thomas Taylor	"	100 800	
964.	J. H. Monger...	",	200 100	10 50 5
1015	Geo. Allington	"	111	511
1045	H. G. Blechynden	"	100	
1063	James Sinclair ...	"	100	50
1102	H. G. Blechynden ...	,	100	${ }_{5}^{5} 0$
1610	John Wilkins ...	S.O. Lic.	100	5
1719	CANNING. Edwin Cockram	"	100	5
1035	COCKBURN SOUND. Thomas A. Cook	s.o. Lea.	100	5
	J. Momgman			
1043	J. Longman	"	105	
1062	P. Murphy ...		100	
1735	Joseph Hoy	s.o. Lic.	100	5
A 4684	Rosendo Salvado :...	1	11200	11.4
, 4685	Do.	"	3600	312
, 4691	murray. J. G. Murray ...	1	7400	
\% 4700	A. Birch ...	,	2250	25
N 1736	NORTH Cowan \& Higham ...	2	20900	210
620	SWAN. J. Dewar	S.O. Lea	261	
621	Do.	"	147	77
807	J. Truslove	"	100	50
955	Daniel King ...	,	100	210
956	Geerge Sadier...	"	100	50
1031	Daniel King ...	"	130	610
1032	S. Mortimer ...		100	50
${ }^{1726}$	Thomas Branson ...	s.o.Lic,	100	${ }_{5} 50$
A 4652	Henry J. Cooke ...	1	3000	110
	WELLINGTON.			
A. 4692	David Eedle	1	12100	
, 4693	Jos. Cookworthy	,'	12100	122
674	whlitams. T. McKenua	s.o. Lea.	100	50

R. CECIL CLIFTON, pro Commissioner of Crown Lands.

* "February" exroneously inserted in Govermment Gazette of 20 th April, 1880.

Electoral District of Fremantle.

FTHE List of Electors for the District of Fremantle may be perused at the Court House, Fremantle, from the 10th to the 24th April next.

Persons desiring to have their names inserted on the Electoral List, must apply on or before 10th April. Objections to Voters to be made in prescribed form, on or before the 24th April.

The Court of Petty Sessions for revision of the Electoral List will be held at the Court House, Fremantle, on Tuesday, the 11th day of May next, at noon.

GEO. SPENCER COMPTON,
Clerk to the Bench of Magistrates. Fremantle, April 1st, 1880.

NOTICE.

M
BS. ELIZABETH WILSON has been appointed Public Poundkeeper for the Guildford Municipality, vice R. Murphy resigned.

EDWARD T. HOOLEY,
Chairman pro. tem., G.M.C.
21st April, 1880.

The Bankruptcy Act, 1871.
In the Supreme Court.
In the matter of proceedings for liquidation by arrangement or composition with Creditors instituted by James Sinclair, the younger, of Newcastle Road, in the Colony of Western Australia, Farmer.
OTICE is hereby given that a first general meeting I- of the Creditors of the above named person has been summoned to be held at my Offices, Nos. 1 and 2 Town Hall Chambers, Perth, on Friday, the seventh day of May, at eleven o'clock in the forenoon.

Dated this twenty-second day of April, 1880.
NATH. HOWELL,

Attomey for the said James Sinclair the Younger.

